- 博客(40)
- 资源 (20)
- 收藏
- 关注
转载 NLP关键词提取方法总结及实现
目录 一、关键词提取概述 二、TF-IDF关键词提取算法及实现 三、TextRank关键词提取算法实现 四、LDA主题模型关键词提取算法及实现 五、Word2Vec词聚类的关键词提取算法及实现 六、信息增益关键词提取算法及实现 七、互信息关键词提取算法及实现 八、卡方检验关键词提取算法及实现 九、基于树模型的关键词提取算法及实现 十、总结 一、关键词提取概述 关键词是能够表达文档中心内容的词语,常用于计算机系统标引论文内容特征、...
2021-09-26 11:12:12 1514
转载 五分钟帮你快速理解双向LSTM
为什么用双向 LSTM?单向的 RNN,是根据前面的信息推出后面的,但有时候只看前面的词是不够的, 例如,我今天不舒服,我打算__一天。只根据‘不舒服‘,可能推出我打算‘去医院‘,‘睡觉‘,‘请假‘等等,但如果加上后面的‘一天‘,能选择的范围就变小了,‘去医院‘这种就不能选了,而‘请假‘‘休息‘之类的被选择概率就会更大。 双向LST...
2019-05-02 23:42:55 2404
转载 终于理解了RNN里面的time_step
TensorFlow中RNN实现的正确打开方式https://zhuanlan.zhihu.com/p/28196873TensorFlow中RNN实现的正确打开方式何之源8 个月前上周写了一篇文章介绍了一下RNN的几种结构,今天就来聊一聊如何在TensorFlow中实现这些结构,这篇文章的主要内容为:一个完整的、循序渐进的学习TensorFlow中RNN实现的方...
2019-04-25 11:34:38 2535
转载 如何为LSTM重新构建输入数据(Keras)
https://jingyan.baidu.com/article/6b97984dd640b01ca2b0bf95.html
2019-04-25 11:33:34 810
转载 LSTM 优化之路
本文首发于滴滴云公众号:https://mp.weixin.qq.com/s/H0AKuKn1XQDEa06jDm3Nug 本文首发于滴滴云公众号:https://mp.weixin.qq.com/s/H0AKuKn1XQDEa06jDm3Nug导读谈到神经网络,相信是当下比较火的一个词。它的发展不是一蹴而就,而是通过各代人的智慧,经过一次一次的优化,迭代才慢慢建...
2019-04-25 11:30:08 5010
转载 一位老it工程师的忠告,新手进来学习,老手进来体会,收获很大.
一位老it工程师的忠告,新手进来学习,老手进来体会,收获很大.诸位,咱当电子工程师也是十余年了,不算有出息,环顾四面,也没有看见几个有出息的!回顾工程师生涯,感慨万千,愿意讲几句掏心窝子的话,也算给咱们师弟师妹们提个醒,希望他们比咱们强![1]好好规划自己的路,不要跟着感觉走!根据个人的理想决策安排,绝大部分人并不指望成为什么院士或教授,而是希望活得滋润一些,爽一些。那么,就需要慎重安排自己的...
2019-04-24 15:27:45 259
转载 关于硕士毕业论文的思路整理
一.总体思路 有人用方法1解决问题A,有人用方法2解决问题B,那么试一试能不能用方法2的思路或者在2的基础上,改进方法1从而更好地解决问题A,这就是能够出论文的点。 整体的思路: 数据获取 特征工程 模型的选择和调优 模型的验证和误差分析备注:另外有几点可以考虑 1.对于训练集数据处理方面,进行算法改进优化 2.对于已有成熟模型...
2019-04-24 15:15:45 3663
转载 自然语言处理常见应用领域及研究内容
自然语言处理研究的内容包括但不限于如下分支领域:文本分类、信息抽取、自动摘要、智能问答、话题推荐、机器翻译、主题词识别、知识库构建、深度文本表示、命名实体识别、文本生成、文本分析(词法、句法、语法)、语音识别与合成等。下面给出一些分支领域的详细介绍:文本分类文本分类用计算机设备对文本集(或其他实体或物件)按照一定的分类体系或标准进行自动分类标记。...
2019-04-24 15:14:10 12773
转载 NLP领域国内外知名会议和期刊
本文介绍自然语言处理(Natural Language Processing, NLP)领域的一些国内外著名会议和期刊。 自然语言处理(NLP)和计算语言学(Computational Linguistics, CL)有很多重合之处。国际会议ACL、EMNLP、NAACL 和 COLING 可以说是 NLP 领域的四大顶会。其中 ...
2019-04-24 15:10:19 1493
转载 廖雪峰 git入门
https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000
2019-03-19 10:10:06 126
转载 推荐系统,从小白到高手
同在学习推荐算法,大概介绍一下我自己规划的推荐算法学习轨迹(还在慢慢实践中,好长时间了,捂脸...)。首先,看完了推荐系统实战的话,应该大概了解了大部分的推荐算法。那我觉得看完了书,应该有必要再从宏观上再来了解一下推荐系统这个研究领域的研究现状,包括研究领域目前有的挑战,比如冷启动问题,大规模矩阵分解问题,增量模型计算问题等等,包括目前热门的研究方向,比如基于LBS、社交网络等等的推荐。最方便...
2019-03-19 08:52:37 243
转载 机器学习 -- 随机森林
1 什么是随机森林? 作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。最初,我是在参加校外竞赛时接触到随机森林算法的。最近几年的国内外大赛,包括2013年百度校园电影推荐系统大赛、2014年阿里巴巴天...
2018-12-06 09:56:01 392
转载 用Python进行数据挖掘(数据预处理)
版权声明:随意转载,不用告诉我,但链接到就行。 https://blog.csdn.net/u011094454/article/details/77618604 用Python进行数据挖掘(数据预处理)本博客进行数据预处理的方法总结自kaggle的几道题目: 1.HousePrices 2.Titanic 以及比...
2018-12-03 10:09:45 612
转载 独家 | 一文读懂社交网络分析-下(应用、前沿、学习资源)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/78138794 <div class="rich_media_content" id="js_content"> ...
2018-12-01 14:19:55 294
转载 l人脸识别必读文章(转)
人脸识别必读的优秀论文 一,人脸检测/跟踪人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小;对于跟踪而言,还需要确定帧间不同人脸间的对应关系。 1,Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004.入选理由:Viol...
2018-12-01 13:15:13 246
转载 python-可视化matplotlib和seaborn
https://blog.csdn.net/cxlhuihui/article/details/800064411.echart可做出更精美的图片,matplotlib和seaborn可以对数据进行简单的可视化操作2.series或dateframe转化成array使用方法.values,在可视化过程中尽量用np数组的形式3.%matplotlib inline 图是嵌入在notebook里面...
2018-11-22 17:05:43 946
转载 Kaggle入门介绍
这是我去年 4 月份参加完第一次 Kaggle 比赛并拿到前 5% 的成绩后写的总结。本文的英文版当时还被 Kaggle 的官方推特转发推荐。一年过去了,Kaggle 的赛制和积分体系等都发生了一些变化,不过本文中描述的依然是行之有效的入门 Kaggle 或者其他任何数据科学项目的方法。本文采用署名 - 非商业性使用 - 禁止演绎 3.0 中国大陆许可协议进行许可。I. Genera...
2018-11-21 15:04:37 316
转载 时间差分方法Q-learning和sarsa的区别
原文链接:https://blog.csdn.net/qq_27514521/article/details/81146632 Q-learning和sarsa都是利用时间差分目标来更新当前行为值函数的。唯一不同的是在Q-learning中,行动策略(产生数据的策略)和要评估的策略不是一个策略,因此称之为异策略(off-policy...
2018-11-05 13:53:10 563
转载 【强化学习】Q-Learning算法详解
【强化学习】Q-Learning详解1、算法思想QLearning是强化学习算法中值迭代的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈S),采取 a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据...
2018-11-05 11:29:10 4070
转载 强化学习(五) - 无模型学习(Sarsa、Q-Learning)
上一节主要讲了Monte-Carlo learning,TD learning。这两个方法都是在给定策略下来估计价值函数V(s)。但是我们的目标是想得到最优策略。基于模型的策略优化过程分为策略评估和策略改进。从一个策略 π 和 v(s) 函数开始,先利用当前策略 π估算v值,然后通过v值来更新策略 π。交替迭代,最后会收敛到最优策略和最优价值函数...
2018-11-05 11:18:53 318
转载 强化学习(四) - 无模型学习(MC、TDL)
上一节讲的是在已知模型的情况下,通过动态规划来解决马尔科夫决策过程(MDP)问题。具体的做法有两个:一个是策略迭代,一个是值迭代。从这一节开始,我们将要进入模型未知的情况下,如何去解决MDP问题。模型未知,即状态转移概率 Pass′Pss′aPss′aPass'Pss′a P^...
2018-11-05 11:17:00 653
转载 强化学习(三) - 基于模型学习(DP)
上一节主要是引入了MDP(Markov decision process)的各种相关的定义与概念。最后得到了 最优状态值函数v∗(s)v∗(s)v∗(s)v∗(s)v∗(s) v_∗(s)v∗(s)v∗(s)v∗(s)v(s)的值,…不断迭代直到策略收敛。策略迭代在每次改进策略后都要对策略进行重新评估,因此比较耗时。参考:动态规划...
2018-11-05 11:11:56 412
转载 强化学习(尔) - 马尔科夫决策过程
马尔科夫决策过程Makov的定义下一个状态的产生只和当前的状态有关,即:本来直观上讲,下一个状态的产生跟所有历史状态是有关的,也就是等式右边所示。但是Markov的定义则是忽略掉历史信息,只保留当前状态的信息来预测下一个状态,这就叫Markov。状态转移概率对于一个具体的状态s和它的下一个状态s’ ,它们的状态转移概率(就是从s转移到s...
2018-11-05 11:11:21 394
转载 强化学习(一) - 基础认知
强化学习 - 基础认知强化学习是想让一个智能体(agent)在不同的环境状态(state)下,学会选择那个使得奖赏(reward)最大的动作(action)。Agent在 t 时刻,通过观测环境得到自己所在的 状态(state),接下来agent根据 策略(policy) 进行决策后,做出一个 动作(action)。这个action就会使得age...
2018-11-05 11:09:21 241
转载 强化学习——从Q-Learning到DQN到底发生了什么?
1 学习目标1. 复习Q-Learning;2. 理解什么是值函数近似(Function Approximation);3. 理解什么是DQN,弄清它和Q-Learning的区别是什么。2 用Q-Learning解决经典迷宫问题现有一个5房间的房子,如图1所示,房间与房间之间通过门连接,编号0到4,5号是房子外边,即我们的终点。我们将agent随机放在任一房间内,每打开一个房门返回一个reward...
2018-11-05 10:52:13 4327
转载 深度强化学习(一): Deep Q Network(DQN)
原文:https://blog.csdn.net/LagrangeSK/article/details/80321265 一、背景DeepMind2013年的论文《Playing Atari with Deep Reinforcement Learning》指出:从高维感知输入(如视觉、语音)直接学习如何控制 agent 对强化学习(RL)来说...
2018-11-02 16:06:26 1991 1
转载 Deep Reinforcement Learning with Double Q-learning
转载至:https://www.cnblogs.com/wangxiaocvpr/p/5620365.htmlDeep Reinforcement Learning with Double Q-learningGoogle DeepMindAbstract 主流的 Q-learning 算法过高的估计在特定条件下的动作值。实际上,之前是不知道是否这样的过高估计是 common的,是否对性...
2018-11-02 15:59:46 537
转载 Deep-Q-Network从入门到放弃
原文出处:https://blog.csdn.net/qq_40514570/article/details/80690467传送门:https://zhuanlan.zhihu.com/p/214217290 前言如果说DQN从入门到放弃的前四篇是开胃菜的话,那么本篇文章就是主菜了。所以,等吃完主菜再放弃吧!1 详解Q-Learning在上一篇文章DQN从入门...
2018-11-01 09:31:41 1489
转载 强化学习(Reinforcement Learning)
转载至https://blog.csdn.net/zhangweijiqn/article/details/53200204知乎上关于deep learning和强化学习的资源:https://zhuanlan.zhihu.com/intelligentunit 目前在Deep Reinforcement Learning取得开拓性进展的主要集中在DeepMind和UC Berkerle...
2018-10-31 15:52:55 404
转载 Deep Learning: Theory and Experiments
<article> <script async="" src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script> <ins class="adsbygoog...
2018-10-31 15:27:57 189
转载 关于Kaggle入门
博客转载至:https://blog.csdn.net/bbbeoy/article/details/73274931 这次酝酿了很久想给大家讲一些关于Kaggle那点儿事,帮助对数据科学(Data Science)有兴趣的同学们更好的了解这个项目,最好能亲身参与进来,体会一下学校所学的东西和想要解决一个实际的问题所需要的能力的差距。虽然不是Data Science出身,但本着严谨的科研态...
2018-10-31 11:02:49 245
转载 人脸识别必读论文汇总
转至:garfielder007导师布置了任务,让我们没人每周精读几篇大牛论文,并且写ppt。因为最近研究的主题是人脸识别,刚好看到有人总结了人脸识别那些必看的文章(各位可以直接移步去链接),于是就想不如按照这个顺序读,并且写写停滞了好久的博客。下面这篇文章是转的,不过刚好可以拿来当做我接下来系列博客的目录。---------------------------------------------...
2018-03-27 16:46:11 13103
转载 近200篇机器学习&深度学习资料分享
作者:廖君来源:github.com|2015-01-20 11:35沙龙活动 | 3月31日 京东、微博、华为实战专家与你共同探讨容器技术实践!编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。《Brief History of Machine Learning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面...
2018-03-27 16:25:03 249
转载 机器学习经典书籍&论文(转载)
比较全面的资料汇总,由于文章太长了,转过来好多链接都失效了,所以只给出原文地址http://blog.sina.com.cn/s/blog_7e5f32ff0102vlgj.html留着以后学习。
2017-11-18 10:30:12 233
转载 机器学习----(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1)
文章转至:作者:yf210yf 感谢您提供的资源资料汇总的很多,转载一下也方便自己以后慢慢学习注:机器学习资料篇目一共500条,篇目二开始更新希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.此外:某些资料在中国访问需要梯子.《Brief History of Machin
2017-11-06 13:45:04 2070
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人