R
韩王-信
无成有终含章可贞
展开
-
R矩阵的索引
1、矩阵可由向量转换得到,所以矩阵原则上用向量的索引方法> a=matrix(1:12,3,4)> a [,1] [,2] [,3] [,4][1,] 1 4 7 10[2,] 2 5 8 11[3,] 3 6 9 12使用二维索引> a[1,2][1] 4原创 2015-04-20 21:20:50 · 7145 阅读 · 0 评论 -
R语言中的四类统计分布函数
R语言中的四类统计分布函数R语言中提供了四类有关统计分布的函数(密度函数,累计分布函数,分位函数,随机数函数)。分别在代表该分布的R函数前加上相应前缀获得(d,p,q,r)。如:1)正态分布的函数是norm,命令dnorm(0)就可以获得正态分布的密度函数在0处的值(0.3989)(默认为标准正态分布)。2)同理,pnorm(0)是0.5就是正态分布的累计密度函数在0处的值。转载 2015-05-29 09:25:01 · 7059 阅读 · 0 评论 -
R中关于显示标签的几个问题
1、使用统计变换summary后的标签值得显示,统计变换后需要用到衍生变量来显示变换后的统计值df x=c(3,1,5,3), y=c(2,4,6,10), label=c('a','a','a','b')) ggplot(data=df,aes(x=as.character(x),y=y))+geom_bar(fun.y=sum,stat='summary')原创 2016-09-21 18:55:39 · 5448 阅读 · 0 评论 -
ggplot2 分面多数据源组合示例
library(ggplot2)source('~/R/odps_common.R')sql' select cust_name_cn,yyyymm as ds,gmv,amplitude,rn from icbubi.dwa_en_ftrd_mon_cust_gmv_d where ds=max_pt(\'icbubi.dwa_en_ftrd_mon_cust_gmv_原创 2016-09-29 13:17:07 · 2555 阅读 · 0 评论 -
igraph关系图
导入关系测试数据,如下,这个不是用户和用户之间的关心,而是用户和环境信息的关系,基于用户和设备之间的关系,不同的设备用不同的颜色标出来###从csv文件中读取关系数据df###从关系数据中整理出来顶点的数据,vertex##给用户的顶点统一表上黑色co##根据设备类型进行着色iwhile (i##生成顶点数据框vertex###组合成原创 2016-09-30 20:20:12 · 5794 阅读 · 0 评论 -
R中的排序
1、order 是返回内在的排序位置,而不是直接返回排序结果。a> order(a)[1] 3 1 2 5 4order 默认是asc的如果要desc的直接加-号> order(-a)[1] 4 5 2 1 3order 返回结果> a[order(-a)][1] 23 20 15 12 9order的这样的特性在datafra原创 2016-10-01 14:26:01 · 1092 阅读 · 0 评论 -
统计频率和频数
使用内置的mtcars统计频数table(mtcars$gear)统计频率paste0(round(prop.table(table(mtcars$gear)),2)*100,’%’)统计频率的另一种方法,使用arregatetotal<-length(mtcarsgear)b<−aggregate(mtcarsgear) b<-aggregate(mtcarsgear,by=list(mtca原创 2016-10-01 17:55:39 · 2130 阅读 · 0 评论 -
ggplot 多列bar图
ggplot 多列情况下bar图,geom_bar 的y只是支持一列不像barplot一样,要实现多列的需要把其余的列数转换成一列dsgmvorderdf##第一种方法是使用reshape的melt#install.packages('reshape2')#library('reshape2')df2pprint(p)##原创 2016-10-02 17:07:08 · 3395 阅读 · 0 评论 -
数据挖掘基本算法
数据挖掘主要分为4类,即预测、分类、聚类和关联,根据不同的挖掘目的选择相应的算法。R语言博大精深,吸纳了来自各方的挖掘算法包,这些包都是由统计学家或是算法研究人员提供,我们可以站在这些伟人的肩膀上实现算法的应用。下面对常用的数据挖掘包做一个汇总:连续因变量的预测:stats包lm函数,实现多元线性回归stats包 glm函数,实现广义线性回归stats包 nls函数,实转载 2016-12-20 20:03:15 · 1268 阅读 · 0 评论