卷积神经网络(CNN)基本原理和公式推导

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weipf8/article/details/82081866

卷积神经网络是一种前馈型神经网络, 受生物自然视觉认知机制启发而来的. 现在, CNN 已经成为众多科学领域的研究热点之一, 特别是在模式分类领域, 由于该网络避免了对图像的复杂前期预处理, 可以直接输入原始图像, 因而得到了更为广泛的应用. 可应用于图像分类, 目标识别, 目标检测, 语义分割等等. 本文介绍可用于图像分类的卷积神经网络的基本结构.

    深度学习是一种特殊的机器学习,通过学习将世界使用嵌套的概念层次来表示并实现巨大的功能和灵活性,其中每个概念都定义为与简单概念相关联,而更为抽象的表示则以较不抽象的方式来计算。

更多内容请查看原文:卷积神经网络(CNN)基本原理和公式推导

没有更多推荐了,返回首页