b站TensorRT官方教程学习笔记
0.简述
1. Part1 TensorRT 简介
1.1 TensorRT 简介
- 用于高效实现已训练好的深度学习模型的推理过程的SDK
- 内含推理优化器和运行时环境
- 使DL模型能以更高吞吐量和更低的延时运行
- 有C++ Python的API,完全等价可以混用

1.1.1 TensorRT基本特性和用法
TensorRT表现:
- 不同模型加速效果不同
- 选用高效算子提升运算效率
- 算子融合减少访存数据、提高访问效率
- 使用低精度数据类型,节约时间空间
1.1.2 TensorRT基本流程

构建期:
-前期准备:日志记录器、计算图构建器、构建器的配置器、动态输入下配置器
运行期:
- 建立计算图的可执行程序Engine ,以及运行此程序的上下文Context,类比CPU进程的概念
1.1.3 TensorRT上搭建模型方法
训练好的网络如何在TensorRT上搭建

1.1.3.1 Workflow:使用TensorRT API搭建



1.1.3.1.1 Logger日志记录器

1.1.3.1.2 Builder引擎构建器






就是权重迁移和逐层加载


FP16模式

Int8模式

怎么让一个Network跑起来
TensorRT运行期技术

Engine计算引擎

本文是TensorRT官方教程的学习笔记,涵盖了TensorRT的基本概念、工作流程、模型搭建方法,包括使用API、ONNX解析器以及框架内的接口。还详细介绍了开发辅助工具如trtexec和性能分析工具,并探讨了高级用法,如多优化配置、插件书写和性能优化策略。
最低0.47元/天 解锁文章

5880

被折叠的 条评论
为什么被折叠?



