什么是深度学习模型

本文探讨了非数据科学家对模型的误解,指出他们常将模型体系结构误称为模型。深度学习中的模型架构是机器学习中的关键概念。
摘要由CSDN通过智能技术生成

Non-data scientists often use the word Model to mistakenly refer to the what in Machine Learning we canonically call Model Architecture. And it couldn't be more wrong!

非数据科学家经常使用“ 模型 ”一词来错误地指代机器学习中我们通常所说的“模型体系结构”。 而且这没有错!

是否想偶尔听到有关Tensorflow,Keras,DeepLearning4J,Python和Java的抱怨? (Wanna hear occasional rants about Tensorflow, Keras, DeepLearning4J, Python and Java?)

Image for post

Join me on twitter @ twitter.com/hudsonmendes!

加入我的Twitter @ twitter.com / hudsonmendes!

Taking Machine Learning models to production is a battle. And there I share my learnings (and my sorrows) there, so we can learn together!

将机器学习模型投入生产是一场战斗。 我在那里分享我的学习(和悲伤),所以我们可以一起学习!

The Model Architecture is very important to the Model. Without the variety of architectures we have we would never be able to fit data for the vastness of different problems that are currently being successfully solved by Deep Learning.

模型架构对模型非常重要。 如果没有各种各样的架构,我们将无法为深度学习当前成功解决的众多不同问题提供合适的数据。

However, the Weights are a vital part of the model too. Different Weights can describe functions that have absolutely different geometry.

但是, 权重也是该模型的重要组成部分 。 不同的权重可以描述具有完全不同的几何形状的函数。

Model = Architecture (a.k.a. algorithm) + Weights (a.k.a. parameters)

模型=体系结构(又名算法)+权重(又名参数)

Let's have a look at how it works:

让我们看一下它是如何工作的:

Image for post
Image for post
f(x) = tanh(w × x) f(x)= tanh(w×x) , with ,其中 w=-0.2 w = -0.2 on the left, and 在左侧, w=2 w = 2 on the right 在右侧

The same function "architecture" (or, "equation") f(x) = tanh(w × x) has produced very different material functions with different physical shapes, due to their different weights (or "coefficients").

相同的函数“体系结构”(或“等式”) f(x)= tanh(w×x)由于权重(或“系数”)不同而产生了具有完全不同物理形状的 材料函数

不当用语 (Inappropriate terminology)

In the statement above, I have used inappropriate terminology on purpose:

在以上声明中,我故意使用了不恰当的术语:

  • "architecture" was used to describe the way that the variables interact within the function;

    体系结构 ”用来描述变量在函数内的交互方式;

  • "physical shape” was used to describe something as immaterial as a curve in the cartesian plan, which could not be less physical.

    物理形状

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>