工厂制造业ai人工智能应用_人工智能与金融服务业转型的未来

工厂制造业ai人工智能应用

As artificial intelligence is becoming core to traditional financial services organizations no surprise: banks, investment management or leading financial advisory enterprises are in the accelerated path of researching solutions, to transform their entire businesses and innovate fast enough to provide smart, user-centric digital services that allow them to retain customers, build intelligent digital engagement and provide new revenue streams.

随着人工智能成为传统金融服务组织的核心,毫不奇怪:银行,投资管理或领先的金融咨询企业正处于研究解决方案的加速路径中,以转型其整个业务并进行足够的创新以提供智能的,以用户为中心的数字服务使他们能够留住客户,建立智能的数字互动并提供新的收入来源。

In order to understand some of the most actual financial market challenges & critical undertakings from the inside and both from the business & emerging technology viewpoints I decided to take a closer look into the finance community and to participate in the following events recently:

为了从内部以及从业务和新兴技术的角度了解一些最实际的金融市场挑战和关键任务,我决定更深入地研究金融界,并参加最近的以下活动:

‘Artificial intelligence and the future of Financial Services’ organized by The Economist and ‘AI and Data Science in Trading’ organized by AIDST Digital Week, to interact with executives, decision makers and thought leaders from across the finance industry. Some of my random thoughts based on the events output you will find outlined below.

由《经济学人》组织的“人工智能与金融服务的未来”和由AIDST数字周组织的“人工智能与交易中的数据科学”,与金融行业的高管,决策者和思想领袖进行互动。 根据事件输出,我的一些随机想法将在下面概述。

The need for external and more timely data has never been greater in the investment workflow. Last week I had an opportunity to participate in an AI & Data Science in Trading virtual event that brought together experts in the use of AI and advanced data analytic techniques within asset management, primarily for finding alpha, managing risk and optimizing portfolios.

在投资工作流程中,对外部和更及时数据的需求从未如此重要。 上周,我有机会参加了AI&数据科学交易虚拟活动,该活动将资产管理中使用AI和高级数据分析技术的专家召集在一起,主要是寻找Alpha,管理风险和优化投资组合。

When it comes to utilizing AI to optimize investment workflow I found ‘Alternative Data’ digital debate as well as ‘The reality of implementing AI within financial markets’ very insightful.

在利用AI优化投资工作流程时,我发现“替代数据”数字辩论以及“在金融市场中实施AI的现实”非常有见地。

According to stats, nearly 73% of the everyday trading is executed by machines. Leading financial enterprises are investing in algorithmic trading because the level and volume of trade carried out by these machines is out of human bounds to process and execute.

根据统计,每天将近73%的交易是由机器执行的。 领先的金融企业正在投资算法交易,因为这些机器进行的交易的水平和数量超出了人为处理和执行的范围。

These machines are based on a very complex model which takes into account the past historical financial data available as well as other information available on the Internet such as news — called alternative data. These systems take real-time trade decisions which maximize their returns.

这些机器基于非常复杂的模型,该模型考虑了过去可用的历史财务数据以及Internet上可用的其他信息(例如新闻)(称为替代数据)。 这些系统做出实时交易决策,从而最大化其回报。

Alternative data sets are information about a particular company that is published by sources outside of the company, which can provide unique and timely insights into investment opportunities. Alternative data sets can be compiled from various sources such as financial transactions, sensors, mobile devices, satellites, public records, and the internet. News and data companies as Bloomberg and Thomson Reuters now include alternative data in their offers.

替代数据集是由公司外部资源发布的有关特定公司的信息,可以提供及时而独特的投资机会见解。 可以从各种来源(例如金融交易,传感器,移动设备,卫星,公共记录和互联网)编译替代数据集。 像彭博社汤姆森路透社这样的新闻和数据公司现在在其报价中都包含替代数据。

Hedge funds and large asset management firms are gorging on “alternative data” to gain an investing edge. In the investing process, investors cannot just focus on fundamentals data, they need to understand what’s happening with ETFs (Exchange Traded Funds), need to understand online activity, what are people in social media saying (social-driven news feeds). Big Data is really the fact that data has just gotten massive and unstructured nature.

对冲基金和大型资产管理公司正在利用“替代数据”来获得投资优势。 在投资过程中,投资者不能只关注基本面数据,他们需要了解ETF(交易所交易基金)的情况,需要了解在线活动,社交媒体上的人们在说什么(社会驱动型新闻提要)。 大数据确实是事实,即数据刚刚变得具有海量和非结构化的性质。

Now, from the AI/ML perspective, active research is going on in the field of stock trading, portfolio optimization, etc. Researchers are constantly trying to learn more and more information from the large volume of data available. A bit older models used only the numerical data available, but today’s system takes into account the financial news before it even reaches the humans and infers outcomes based on the news. In the future, we can expect machines to have a great control over the financial markets.

现在,从AI / ML的角度来看,正在股票交易,投资组合优化等领域进行积极的研究。研究人员正在不断尝试从大量可用数据中学习越来越多的信息。 较旧的模型仅使用可用的数字数据,但是今天的系统在财务新闻还未到达人类之前就将其考虑在内,并根据该新闻推断结果。 将来,我们可以期望机器对金融市场有很好的控制。

Manuela Veloso, Head of AI research, J.P. Morgan couldn’t be more accurate here, when it comes to the importance of an augmented look at the big picture, when thinking about harnessing human experience and the power of artificial intelligence to enhance financial services business process. This is what needs to be happening even more in the financial markets. Whether buy side or sell side or independent, the capabilities that can be unleashed when you bring together the best of machines (fast processing) and humans (creativity and decision making), the better your processes will be.

JP Morgan的AI研究负责人Manuela Veloso在这里要说得更准确一点,那就是要增强全局视野,考虑利用人类经验和人工智能的力量来增强金融服务业务时,处理。 这是在金融市场上甚至需要发生的事情。 无论是买方,卖方还是独立的,将最好的机器(快速处理)和人员(创造力和决策力)结合在一起时可以释放的功能,您的流程将变得更好。

Terry Hickey, Chief Analytics Officer at CIBC shared a very interesting insight, that it’s relatively very simple to build a model to execute specific function, but to integrate that model into the existing workflow becomes very expensive when you’re dealing with large computing systems (banks, insurance companies, asset management and etc.). He predicts that in the next 2–3y time market will witness more integrations into financial backend systems and this trend will keep growing. Hickey added, that financial services organizations need to look at the ROI across identified business use cases, and unless one can show clear and measurable benefits, the money to fund AI projects will dry up.

CIBC的首席分析官Terry Hickey分享了一个非常有趣的见解,即构建模型以执行特定功能相对非常简单,但是当您处理大型计算系统时,将模型集成到现有工作流程中将变得非常昂贵(银行,保险公司,资产管理等)。 他预测,在接下来的2-3年内,市场将见证更多与金融后端系统的集成,并且这种趋势将持续增长。 Hickey补充说,金融服务组织需要在确定的业务用例中考虑ROI,除非能够显示出明确且可衡量的收益,否则用于资助AI项目的资金将枯竭。

Dave Oliver, Head of Nerve Center at RBS, said that the critical aspect of implementing innovation is the ease-of-use of AI and democratize the access on the enterprise-wide manner and Sally Eaves cited research from Edelman recognizing that consumer trust in business is at a 17-year low. As AI becomes more and more prominent in financial services, there’s a real possibility this could get worse. When people don’t understand AI or the inputs that drive a model — uncertainty grows. To combat this, enterprises should take two steps: make AI more transparent and explainable. It’s also very important to focus on diversity. The more consumers and users can understand technology, the more they’ll trust it.

苏格兰皇家银行神经中心负责人戴夫·奥利弗( Dave Oliver)表示,实施创新的关键方面在于AI的易用性以及使整个企业范围内的访问民主化,萨利·伊夫斯( Sally Eaves)引用了爱德曼的研究报告,认为消费者对企业的信任处于17年低点。 随着人工智能在金融服务中的地位越来越高,这确实有可能变得更糟。 当人们不了解AI或驱动模型的输入时,不确定性就会增加。 为此,企业应采取两个步骤:使AI更加透明和可解释。 关注多样性也很重要。 消费者和用户对技术的了解越多,他们对技术的信任就越高。

When it comes to the reality of implementing Artificial Intelligence within financial markets, John Ashley (General Manager, Financial Services and Technology at NVIDIA) shared an interesting examples, outlined below:

当谈到在金融市场中实施人工智能的现实时, John Ashley ( NVIDIA金融服务和技术总经理)分享了一个有趣的示例,概述如下:

  • Scotiabank Use Case (deeply learning derivatives) about applying deep learning to derivatives valuation (an accelerated AI power risk model emulating whatever models you have, but you are moving a bulk of that compute time out of the trade window). Deep neural networks can be used to provide highly accurate derivatives valuations and these model compute valuations are approximately 1 million times faster than traditional Monte Carlo models.

    丰业银行用例(深度学习衍生产品),涉及将深度学习应用于衍生产品估值(一种加速的AI功率风险模型,可模拟您拥有的任何模型,但您将大部分计算时间移出了交易窗口)。 深度神经网络可用于提供高度精确的导数估值,这些模型计算的估值比传统的蒙特卡洛模型快约100万倍。
  • JP Morgan Deep Hedging Use Case. With deep hedging, machines can learn from large amounts of historical data to make more precise hedging decisions. Another advantage is that the technique allows for more automation of hedging, as machines can run parallel to identify appropriate hedges — this can make the entire process faster (already applied to index options books and can be expanded to more liquid vanilla products). Obtaining the optimal hedging strategy is a difficult problem, but representing the strategy as a neural network makes it tractable thus we’re more in control of risk mitigation.

    摩根大通深度对冲用例。 通过深层对冲,机器可以从大量历史数据中学习,以做出更精确的对冲决策。 另一个优势是,该技术可以使套期保值的自动化程度更高,因为机器可以并行运行以识别适当的套期保值,这可以使整个过程更快(已经应用于指数期权簿,并且可以扩展到更多的液态香草产品)。 获得最佳对冲策略是一个困难的问题,但是将策略表示为神经网络使其易于处理,因此我们在控制风险缓解方面更具控制力。

Some of the questions / opportunities appearing in the context of next generation AI systems in the financial services I found really interesting during both events and for further exploration:

在这两次活动中以及在进一步探索中,我发现在金融服务的下一代AI系统中出现的一些问题/机遇确实很有趣:

  • Digitization of historical fundamental research and internal communication data as a source for alpha generation

    历史基础研究和内部交流数据的数字化可作为alpha生成的来源
  • Automation & decision intelligence in the area of datasets evaluation / data providers / buyers.

    数据集评估/数据提供者/购买者领域的自动化和决策智能。
  • Human vs. machine intelligence ratio in the coming years when it comes to decision process in the portfolio management area

    在投资组合管理领域的决策过程中,未来几年的人机对机器智能比

Ps Leveraging latest advancements in AI and emerging digital technologies will indisputably reshape landscape of highly regulated industries. What are still the biggest barriers to overcome? What are the most prominent opportunities ahead? I encourage you to interact via web, comments, or by getting in touch directly.

Ps利用AI和新兴数字技术的最新进展,无疑将重塑高度监管的行业。 仍然需要克服的最大障碍是什么? 未来最突出的机会是什么? 我鼓励您通过网络,评论或直接联系来进行交互

翻译自: https://medium.com/swlh/ai-and-the-future-of-business-transformation-in-financial-services-da9a01db4b1b

工厂制造业ai人工智能应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值