梯度下降算法的正确步骤_梯度下降算法

这篇博客详细介绍了梯度下降算法的正确实施过程,适用于机器学习和深度学习中的优化问题。通过清晰的解释,帮助读者理解如何利用Python实现这一关键的优化技术。
摘要由CSDN通过智能技术生成

梯度下降算法的正确步骤

Title: What is the Gradient Descent Algorithm and its working.

标题:什么是梯度下降算法及其工作原理。

Gradient descent is a type of machine learning algorithm that helps us in optimizing neural networks and many other algorithms. This article ventures into how this algorithm actually works, its types, and its significance in the real world.

梯度下降是一种机器学习算法,可帮助我们优化神经网络和许多其他算法。 本文探讨了该算法的实际工作原理,类型及其在现实世界中的重要性。

简介 (A Brief Introduction)

Gradient descent is one of the most popular algorithms to perform optimization and by far the most common way to optimize neural networks. At the same time, every state-of-the-art Deep Learning library contains implementations of various algorithms to optimize gradient descent (e.g. lasagne’s, caffe’s, and keras’ documentation).

梯度下降是执行优化的最流行算法之一,也是迄今为止最优化神经网络的最常用方法。 同时,每个最新的深度学习库都包含各种算法的实现,以优化梯度下降(例如,千层面,咖啡和keras的文档)。

The reason we’re talking about it here is not merely theoretical. Gradient Descent algorithm is much more than it seems to be. It is used time and again by ML practitioners, Data scientists, and students to optimize their models.

我们在这里谈论它的原因不仅仅是理论上的。 梯度下降算法远不止于此。 机器学习从业人员,数据科学家和学生反复使用它来优化模型。

Gradient descent is a way to minimize an objective function parameterized by a model’s parameters by updating the parameters in the opposite direction of the gradient of the objective function w.r.t. to the parameters. The learning rate $alpha$ determines the size of the steps we take to reach a (local) minimum. In other words, we follow the direction of the slope of the surface created by the objective function downhill until we reach a valley.

梯度下降是一种通过在目标函数wrt与参数的梯度相反的方向上更新参数来最小化由模型的参数参数化的目标函数的方法。 学习率$ alpha $决定了我们达到(本地)最小值的步骤的大小。 换句话说,我们遵循由下坡的目标函数创建的表面的坡度方向,直到到达山谷。

Now that you’ve gotten a basic insight of the algorithm, let’s dig deep in it in this post. We will define and cover some important aspects like its working, it’s working examples, types and a final conclusion to mould it all.

现在您已经对该算法有了基本的了解,让我们在本文中深入研究它。 我们将定义并涵盖一些重要方面,例如其工作,它的工作示例,类型以及塑造这一切的最终结论。

什么是梯度下降? (What is exactly Gradient Descent ?)

Answer the question posed by the title of this post directly below this header. This will increase your chances of ranking for the featured snippet on Google for this phrase and provide readers with an immediate answer. Keep the length of this definition — at least in this very basic introduction — between 50 and 60 words.

回答此标题正下方的帖子标题所提出的问题。 这将增加您对该词在Google上的精选摘要进行排名的机会,并为读者提供立即的答案。 至少在本基本介绍中,此定义的长度应保持在50到60个字之间。

After the brief definition, dive further into the concept and add more context and explanation if needed.

在简要定义之后,请进一步深入该概念,并在需要时添加更多上下文和说明。

Gradient descent is an optimization algorithm used to find the values of parameters (coefficients) of a function (f) that minimizes a cost function (cost).

梯度下降是一种优化算法,用于查找使成本函数(cost)最小的函数(f)的参数(系数)的值。

Gradient descent is best used when the parameters cannot be calculated analytically (e.g. using linear algebra) and must be searched for by an optimization algorithm.

当无法解析计算参数(例如使用线性代数)并且必须通过优化算法进行搜索时,最好使用梯度下降。

Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function. To find a local minimum of a function using gradient descent, we take steps proportional to the negative of the gradient (or approximate gradient) of the function at the current point. But if we instead take steps proportional to the positive of the gradient, we approach a local maximum of that function; the procedure is then known as gradient ascent. Gradient descent was originally proposed by Cauchy in 1847.

梯度下降是用于找到可微函数的局部最小值的一 迭代 优化 算法 。 要使用梯度下降找到函数的局部最小值,我们采取与该函数在当前点的梯度 (或近似梯度)的负值成比例的步骤。 但是,如果我们改为采取与梯度的正比成比例的步骤,则会逼近该函数的局部最大值 。 该过程称为梯度上升 。 梯度下降最初是由柯西在1847年提出的。

Gradient descent is also known as steepest descent; but gradient descent should not be confused with the method of steepest descent for approximating integrals.

梯度下降也被称为最陡下降 ; 但是,不应将梯度下降与近似积分的最速下降方法混淆。

好的,但是为什么重要呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值