python 验证模型
This is a memo to share what I have learnt in Model Validation (using Python), capturing the learning objectives as well as my personal notes. The course is taught by Kasey Jones from DataCamp.
这是一份备忘录,分享了我在模型验证(使用Python)中学到的知识,记录了学习目标以及我的个人笔记。 该课程由DataCamp的Kasey Jones教授。
A machine learning model needs to go through proper validation in order to ensure optimum model performance on new data.
机器学习模型需要经过适当的验证,以确保对新数据的最佳模型性能。
I have learnt the following topics:
我已经学习了以下主题:
- Basics of model validation 模型验证的基础
- Accuracy and evaluation metrics 准确性和评估指标
- Splitting data into train, validation, and test sets 将数据分为训练,验证和测试集
Validation techniques
验证技术
Cross-validation and LOOCV
交叉验证和LOOCV
- tools for creating validated and high performing models 用于创建经过验证的高性能模型的工具
- Hyperparameter tuning 超参数调整
翻译自: https://medium.com/ai-in-plain-english/model-validation-in-python-ad23c1d215b
python 验证模型

1188

被折叠的 条评论
为什么被折叠?



