共轭梯度下降法matlab,用matlab实现最速下降法,牛顿法和共轭梯度法求解实例

a7f4a3f590493a1e451dd952a488fd7c.gif 用matlab实现最速下降法,牛顿法和共轭梯度法求解实例

(5页)

4fc19ff1-5602-4400-b21a-6f0acc7963551.gif

本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!

19.90 积分

实验的题目和要求 1、所属课程名称:最优化方法2、实验日期:2010 年 5 月 10 日~2010 年 5 月 15 日3、实验目的掌握最速下降法,牛顿法和共轭梯度法的算法思想,并能上机编程实现相应的算法。二、实验要求用 MATLAB 实现最速下降法,牛顿法和共轭梯度法求解实例。四、实验原理最速下降法是以负梯度方向最为下降方向的极小化算法,相邻两次的搜索方向是互相直交的。牛顿法是利用目标函数 在迭代)(xf点 处的 Taylor 展开式作为模型函数,并利用这个二次模型函数的kx极小点序列去逼近目标函数的极小点。共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向 仅仅是负梯度方向 与上kdkg?一次接待的搜索方向 的组合。1?kd五.运行及结果如下:最速下降法:题目:f=(x-2)^2+(y-4)^2M 文件:function [R,n]=steel(x0,y0,eps)syms x;syms y;f=(x-2)^2+(y-4)^2;v=[x,y];j=jacobian(f,v);T=[subs(j(1),x,x0),subs(j(2),y,y0)];temp=sqrt((T(1))^2+(T(2))^2);x1=x0;y1=y0;n=0;syms kk;while (temp>eps)d=-T;f1=x1+kk*d(1);f2=y1+kk*d(2);fT=[subs(j(1),x,f1),subs(j(2),y,f2)]; fun=sqrt((fT(1))^2+(fT(2))^2);Mini=Gold(fun,0,1,0.00001);x0=x1+Mini*d(1);y0=y1+Mini*d(2);T=[subs(j(1),x,x0),subs(j(2),y,y0)];temp=sqrt((T(1))^2+(T(2))^2);x1=x0;y1=y0;n=n+1;endR=[x0,y0]调用黄金分割法:M 文件:function Mini=Gold(f,a0,b0,eps)syms x;format long;syms kk;u=a0+0.382*(b0-a0);v=a0+0.618*(b0-a0);k=0;a=a0;b=b0;array(k+1,1)=a;array(k+1,2)=b;while((b-a)/(b0-a0)>=eps)Fu=subs(f,kk,u);Fv=subs(f,kk,v);if(FuFv)a=u;u=v;v=a+0.618*(b-a);k=k+1;endarray(k+1,1)=a;array(k+1,2)=b;endMini=(a+b)/2;输入:[R,n]=steel(0,1,0.0001)R = 1.99999413667642 3.99999120501463R = 1.99999413667642 3.99999120501463n = 1牛顿法:题目:f=(x-2)^2+(y-4)^2M 文件:syms x1 x2; f=(x1-2)^2+(x2-4)^2; v=[x1,x2]; df=jacobian(f,v); df=df.'; G=jacobian(df,v); epson=1e-12;x0=[0,0]';g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)});k=0;mul_count=0;sum_count=0; mul_count=mul_count+12;sum_count=sum_count+6; while(norm(g1)>epson) p=-G1\g1; x0=x0+p; g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)}); G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)}); k=k+1; mul_count=mul_count+16;sum_count=sum_count+11; end; k x0 mul_count sum_count结果::k = 1x0 =24mul_count = 28sum_count = 17共轭梯度法:题目:f=(x-2)^2+(y-4)^2M 文件:function f=conjugate_grad_2d(x0,t)x=x0;syms xi yi af=(xi-2)^2+(yi-4)^2;fx=diff(f,xi);fy=diff(f,yi); fx=subs(fx,{xi,yi},x0);fy=subs(fy,{xi,yi},x0);fi=[fx,fy];count=0;while double(sqrt(fx^2+fy^2))>ts=-fi;if count<=0s=-fi;elses=s1;endx=x+a*s;f=subs(f,{xi,yi},x);f1=diff(f);f1=solve(f1);if f1~=0ai=double(f1);elsebreakx,f=subs(f,{xi,yi},x),countendx=subs(x,a,ai);f=xi-xi^2+2*xi*yi+yi^2;fxi=diff(f,xi);fyi=diff(f,yi);fxi=subs(fxi,{xi,yi},x);fyi=subs(fyi,{xi,yi},x);fii=[fxi,fyi];d=(fxi^2+fyi^2)/(fx^2+fy^2);s1=-fii+d*s;count=count+1;fx=fxi;fy=fyi;endx,f=subs(f,{xi,yi},x),count输入:conjugate_grad_2d([0,0],0.0001)结果:x = 0.24998825499785 -0.24999998741273f = 0.12499999986176count = 10ans = 0.12499999986176diff 函数用于对符号表达式求导数。该函数的一般调用格式为:diff(s):没有指定变量和导数阶数,则系统按 findsym 函数指示的默认变量对符号表达式 s求一阶导数。diff(s,'v'):以 v 为自变量,对符号表达式 s 求一阶导数。diff(s,n):按 findsym 函数指示的默认变量对符号表达式 s 求 n 阶导数,n 为正整数。diff(s,'v',n):以 v 为自变量,对符号表达式 s 求 n 阶导数。6、结论如下 :最速下降法越接近极小值,步长越小,前进越慢。牛顿法要求二阶导数,计算量很大。共轭梯度法是介于最速下降和牛顿法之间的算法,克服了最速下降法的收敛速度慢的缺点,又避免了牛顿法的大计算量。 关 键 词: 用matlab实现最速下降法牛顿法和共轭梯度法求解实例

4d91c43bfc72ca913299809b07b4968f.gif  天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

关于本文

本文标题:用matlab实现最速下降法,牛顿法和共轭梯度法求解实例

链接地址: https://www.wenku365.com/p-1585842.html

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值