计算机代数与数论pdf,计算机代数及数论(maple).pdf

第 15 卷第 3 期 重 庆 教 育 学 院 学 报 Vol. 15 No. 3

2002 年 5 月 Journal of Chongqing College of Education May. 2002

( )

文章编号 :1008 - 6390 2002 03 - 0011 - 05

计 算 机 代 数 与 数 论

李 世 奇

(重庆教育学院数学系 ,重庆 400067)

摘  要 :本文论述计算机代数系统 Maple 的数论软件包 numtheory 的应用.

关键词 :计算机代数系统 ;Maple ;数论

中图分类号:TP11. 1    文献标识码 :A

1  概述

( )

计算机代数系统 CAS Computer Algebra System 之一 ———Maple 对于数学研究和数学教学是强有力的工具 ,Maple 中的

数论软件包 numtheory 对于数论研究和教学也同样如此. 软件包 numtheory 有如下函数 :

B 或 bernoulli  ——— 计算伯努利数和伯努利多顶式

F 或fermat ——— 计算 n 阶费马数

Gigcd ——— 计算高斯整数的最大公因数

L 或 legendre ——— 计算Legendre 符号

M 或 mersenne ——— 计算 n 阶Mersenne 素数

bigomega ——— 计算素数因子的重数

cfrac ——— 计算连分式表达式

cfracpol ——— 计算有理多项式所有实根的简单连分式

cyclotomic ——— 计算分圆多项式

divisors ——— 返回整数的正因数集合

euler ——— 计算 euler 数和 euler 多项式

factorEQ ——— 欧几里德环 Z( d) 上的整因数分解

factorset ——— 返回整数的素数因子集合

ifactor ——— 整数因数分解

ifactors ——— 表形式表达整数因数分解

imagunit ——— 计算虚数单位与整数的模运算

( ) ( )

index 或 mlog ——— 计算 x 对于底 a mod n 的离散对数 又称为指标

integral - basis ——— 计算代数数域的整数基

invcfrac ——— 转换简单循环连分式为二次无理根

( )

invphi ——— Totient 反函数 参见下文phi

isolve ——— 求方程或方程组的整数解

isprime ——— 测试整数是否素数

issqrfree ——— 测试整数是否无平方因子

ithprime ——— 返回素数表上第 i 个素数

jacobi ——— 雅可比函数

kronecker ——— 非齐次丢凡图方程近似解

( ) ( )

lambda

内容简介: 本书论述了算法数论的基本内容,其中包括:连分数、代数数域、椭圆曲线、素性检验、大整数因子分解算法、椭圆曲线上的离散对数、超椭圆曲线。本书的特点是内容涉及面广,在有限的篇幅内,包含了必要的预备知识和数学证明,尽可能形成一个完整的体系。并且本书的部分内容曾多次在中国科学院研究生院信息安全国家重点实验室和广州大学作为硕士研究生教材使用。本书可作为信息安全、数论等专业的研究生教材及相关专业的研究人员、高等学校的教师和高年级学生的参考。 目录: 序 前言 第一章 整数的因子分解 1.1 唯一分解定理 1.2 辗转相除法(欧氏除法) 1.3 Mersenne素数和Fermat素数 1.4 整系数多项式 1.5 环Z和Z[ω] 习题一 第二章 同余式 2.1 孙子定理 2.2 剩余类环 2.3 Euler函数ρ(m) 2.4 同余方程 2.5 原根 2.6 缩系的构造 习题二 第三章 二次剩余 3.1 定义及Euler判别条件 3.2 Legendre符号 3.3 Jacobi符号 习题三 第四章 特征 4.1 剩余系的表示 4.2 特征 4.3 原特征 4.4 特征和 4.5 Gauss和 习题四 第五章 连分数 5.1 简单连分数 5.2 用连分数表实数 5.3 最佳渐近分数 5.4 Legendre判别条件 习题五 第六章 代数数域 6.1 代数整数 6.2 Dedekind整环 6.3 阶的一些性质 第七章 椭圆曲线 7.1 椭圆曲线的群结构 7.2 除子类群 7.3 同种映射 7.4 Tate模和Weil对 7.5 有限域上的椭圆曲线 习题七 第八章 在密码学中的一些应用 8.1 RSA公钥密码 8.2 Uiffie-Hellman体制 8.3 ElGamal算法 8.4 基于背包问题的公钥密码 8.5 秘密共享 第九章 素性检验 9.1 Fermat小定理及伪素数 9.2 强伪素数及Miller-Rabin检验 9.3 利用n-1的因子分解的素性检验 9.4 利用n+1的因子分解的素性检验 9.5 分圆环素性检验 9.6 基于椭圆曲线的素性检验 第十章 大整数因子分解算法 10.1 连分数因子分解算法 10.2 二次筛法 10.3 Pollard的P-1因子分解算法 10.4 椭圆曲线因子分解算法 10.5 数域筛法 习题十 第十一章 椭圆曲线上的离散对数 11.1 椭圆曲线公钥密码 11.2 小步-大步法 11.3 家袋鼠和野袋鼠 11.4 MOV约化 11.5 FR约化 11.6 SSSA约化 11.7 有限域上离散对数的计算 第十二章 超椭圆曲线 12.1 超椭圆曲线的Jacobian 12.2 虚二次代数函数域 12.3 基于超椭圆曲线的公钥密码 附录 一些常用算法 A.1 不可约多项式的判别 A.2 有限域中平方根的求解 A.3 有限域上的分解 A.4 Hensel引理 A.5 格 A.6 Z[x]中多项式的分解 参考文献 免责申明:此书是我在网络上获取的,希望对大家有用。资源版权归作者及其公司所有,如果你喜欢,请购买正版。~~~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值