java levenshtein算法,Java 比较两个字符串的相似度算法(Levenshtein Distance)

本文介绍Levenshtein Distance算法,用于计算两个字符串之间的编辑距离,通过动态规划求解。核心思想是构建二维数组追踪字符匹配,最终得出相似度。通过实例演示如何在Java中实现并计算字符串' Steel '和' SteelPipe '的相似度。
摘要由CSDN通过智能技术生成

转载自: https://blog.csdn.net/JavaReact/article/details/82144732

868ae0ac16bb42825b54ca4bd70fc268.png

算法简介:

Levenshtein Distance,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。

许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。

/**

* 比较两个字符串的相识度

* 核心算法:用一个二维数组记录每个字符串是否相同,如果相同记为0,不相同记为1,每行每列相同个数累加

* 则数组最后一个数为不相同的总数,从而判断这两个字符的相识度

*

* @param str

* @param target

* @return

*/

private static int compare(String str, String target) {

int d[][]; // 矩阵

int n = str.length();

int m = target.length();

int i; // 遍历str的

int j; // 遍历target的

char ch1; // str的

char ch2; // target的

int temp; // 记录相同字符,在某个矩阵位置值的增量,不是0就是1

if (n == 0) {

return m;

}

if (m == 0) {

return n;

}

d =

new int[n + 1][m + 1];

// 初始化第一列

for (i = 0; i <= n; i++) {

d[i][

0] = i;

}

// 初始化第一行

for (j = 0; j <= m; j++) {

d[

0][j] = j;

}

for (i = 1; i <= n; i++) {

// 遍历str

ch1 = str.charAt(i -

1);

// 去匹配target

for (j = 1; j <= m; j++) {

ch2 = target.charAt(j -

1);

if (ch1 == ch2 || ch1 == ch2 + 32 || ch1 + 32 == ch2) {

temp =

0;

}

else {

temp =

1;

}

// 左边+1,上边+1, 左上角+temp取最小

d[i][j] = min(d[i -

1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + temp);

}

}

return d[n][m];

}

/**

* 获取最小的值

*/

private static int min(int one, int two, int three) {

return (one = one < two ? one : two) < three ? one : three;

}

/**

* 获取两字符串的相似度

*/

public static float getSimilarityRatio(String str, String target) {

int max = Math.max(str.length(), target.length());

return 1 - (float) compare(str, target) / max;

}

public static void main(String[] args) {

String a=

"Steel";

String b =

"Steel Pipe";

System.out.println(

"相似度:"+getSimilarityRatio(a,b));

}

算法原理:

该算法的解决是基于动态规划的思想,具体如下:

设 s 的长度为 n,t 的长度为 m。如果 n = 0,则返回 m 并退出;如果 m=0,则返回 n 并退出。否则构建一个数组 d[0..m, 0..n]。

将第0行初始化为 0..n,第0列初始化为0..m。

依次检查 s 的每个字母(i=1..n)。

依次检查 t 的每个字母(j=1..m)。

如果 s[i]=t[j],则 cost=0;如果 s[i]!=t[j],则 cost=1。将 d[i,j] 设置为以下三个值中的最小值:

紧邻当前格上方的格的值加一,即 d[i-1,j]+1

紧邻当前格左方的格的值加一,即 d[i,j-1]+1

当前格左上方的格的值加cost,即 d[i-1,j-1]+cost

重复3-6步直到循环结束。d[n,m]即为莱茵斯坦距离。

参考链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值