mysql 高并发重复写入_高并发场景下数据重复插入的问题

在高并发环境中,使用单纯的查询判断无法确保数据唯一性。文章通过实例展示了如何利用Redis的分布式锁(setnx)实现原子性操作,有效避免了数据重复插入的问题,保证了数据的正确性。
部署运行你感兴趣的模型镜像

高并发场景下,数据库经常会发生数据重复插入的问题,这时候单单在插入前,查询数据库,判断是否存在,再进行插入,往往不能保证数据唯一性。

查询数据库判断是否存在

测试代码: th_insert_test.py 每次插入前,去数据库查询,要插入的 User0-9 是否存在,若不存在则插入,若存在,则返回已经有。

#-*- coding:utf8 -*-

def db_op_thread_func(i, num_of_op):

r = redis.Redis(host='127.0.0.1', port=6379, db=0)

# r = redis.Redis(connection_pool=pool)

conn = MySQLdb.connect(host="redisHost", port=3306, user="root", passwd="pass", db="blog")

cursor = conn.cursor()

for j in range(0, int(num_of_op)):

nickname = 'User' + str(int(i % 10))

lockkey = "lock"+nickname

getsql = ("select ID from User where Username = '%s'") % (nickname)

cursor.execute(getsql)

fetchData = cursor.fetchall()

if not fetchData :

sql = ("insert into User (Username) values('%s') ")%(nickname)

cursor.execute(sql)

id = int(conn.insert_id())

print int(id)

print "thread", i, ":", " num:", j

conn.commit()

else:

print '已经有'

conn.close()

if __name__ == "__main__":

args = sys.argv

num_of_thd = args[1] ## 线程数

num_of_op = args[2] ## 每个线程的op数

threads = []

for i in range(0, int(num_of_thd)):

threads.append(threading.Thread(target=db_op_thread_func, args=(i, num_of_op)))

for t in threads:

t.start()

for t in threads:

t.join()

测试一下,运行 python th_insert_test.py 50 5

50个线程,每个线程op数为5

6d95914b0cd017c7da53fec8b146fdda.png

理想的运行结果: User0-9 ,10条数据。

实际数据库插入运行结果:

结果1:

11fae29de17825c3ba54829db672e231.png 

结果2:

19eea6ffa0d6d4affd39937799e50a3e.png

可以看到 两次分别产生56 和46 行,这样在并发下是不可行的。

分布式锁方案

基于 redis 的 setnx 来解决这一问题。

def db_op_thread_func(i, num_of_op):

r = redis.Redis(host='redisHost', port=6379, db=0)

conn = MySQLdb.connect(host="dbHost", port=3306, user="root", passwd="pass", db="blog")

cursor = conn.cursor()

for j in range(0, int(num_of_op)):

nickname = 'User' + str(int(i % 10))

lockkey = "lock"+nickname

getsql = ("select ID from User where Username = '%s'") % (nickname)

cursor.execute(getsql)

fetchData = cursor.fetchall()

reply = r.setnx(lockkey, 1)

if (reply == True):

r.expire(lockkey, 30)

RedisLock = False

else:

RedisLock = True

if not fetchData and RedisLock == False:

sql = ("insert into User (Username) values('%s') ")%(nickname)

cursor.execute(sql)

id = int(conn.insert_id())

print int(id)

print "thread", i, ":", " num:", j

conn.commit()

else:

print '已经有'

conn.close()

setnx key value 若 value 存在 则返回 False.

5db307201972f7432f43c3861c216412.png

运行测试:

两次插入,第一次插入10条,第二次插入0条。

e2322514db2ea981e25d7593a7529466.png

每当插入前设置 UserName 的一个 redis Lock ,expire 设置为30s ,这样就可以利用 setnx 的原子性 来实现分布式锁来保证数据唯一性。

点赞 1

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值