yolov3代码详解_代码资料

738610672523d7da9a38ae71c73f4f52.png

faster RCNN

TensorFlow版本:

龙鹏:【技术综述】万字长文详解Faster RCNN源代码(一)

buptscdc:tensorflow 版faster rcnn代码理解(1)

lonlon ago:Tensorflow 版本 Faster RCNN 代码解读

Faster RCNN源码解析(1) Faster RCNN源码解析(2)

Faster R-CNN 源码解析(Tensorflow版)

Faster-RCNN Tensorflow版本源码解析(一):网络训练部分train_net.py

http://www.jarvis73.cn/2018/04/01/Faster-RCNN-Code-Analysis/

从结构、原理到实现,Faster R-CNN全解析(原创)

详细的Faster R-CNN源码解析之proposal_layer和proposal_target_layer源码解

Faster rcnn代码观看 - wanghuahua_1003的博客 - CSDN博客

faster-rcnn代码解读记录,github+tf - qq_41576083的博客 - CSDN博客

Faster R-CNN 入坑之源码阅读

caffe版本

Faster rcnn代码理解(1)

Faster RCNN 源码分析

yolov3

红色石头:重磅!YOLOv3 的 TensorFlow 实现,GitHub 完整源码解析

OpenCV

红色石头:OpenCV 机器视觉入门精选 100 题(附 Python 代码)

YOLOv3是一种目标检测算法,它在PyTorch框架下实现。你可以在GitHub上找到YOLOv3的PyTorch版本代码,地址是https://github.com/ultralytics/yolov3。这个代码库提供了一些教程和运行结果,但不一定能直接运行成功。你可以在同目录下新建一个.ipynb文件,并在其中运行代码"%run detect.py"来尝试运行。\[1\] 在代码解读方面,首先需要准备数据集和关键文件。然后,代码的大致流程包括数据与标签的读取、模型构造、前向传播和计算损失。具体来说,模型构造部分包括构建convolutional层、rout层和shortcut层,以及构建yolo层。\[2\] 如果你想深入了解YOLOv3的PyTorch版本代码,可以参考官方教程,地址是https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data。这个教程提供了更详细的训练自定义数据集的指导。\[3\] #### 引用[.reference_title] - *1* *3* [YOLOv3 Pytorch代码及原理分析(一):跑通代码](https://blog.csdn.net/weixin_43605641/article/details/107524168)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [YOLOV3 Pytorch版本代码解读](https://blog.csdn.net/Weary_PJ/article/details/128749270)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值