目录
  • 1. 题目:
  • 2. 代码:
  • 2.1边界条件处理
  • 2.2分治策略
  • 2.3合并结果
  • 2.4递归终止条件
  • 2.5效率分析
  • 小结:


1. 题目:

算法设计与分析(快速幂算法_leetcode

2. 代码:

#include<iostream>
using namespace std;

int pow(int x, int n){
	// 边界条件 
	if (x == 0) return 0;					// 排除特殊情况 
	if (n == 0) return 1;					// 0次方等于1
	
	// 分、治 
	int exp2 = pow(x, n / 2);				// 计算 x^(n/2) 
	
	// 合 
	if (n % 2 == 1) return exp2 * exp2 * x;	// 奇数则返回 x^(n/2) * x^(n/2) * x
	else return exp2 * exp2;				// 偶数则返回 x^(n/2) * x^(n/2)
}

int main(){
	int x, n;
	cin >> x;
	cin >> n;
	
	cout << pow(x, n) << endl;
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.

这里用到的是递归与分治的思想,只不过只计算了其中一个递归,也就是说时间复杂度为:

T(n) = T(n/2) + 1
计算得:T(n) = logn

主要写好 分、治、合 三个步骤即可

2.1边界条件处理
  • 如果 x 为 0,则直接返回 0,因为任何数的 0 次幂都是 1,但 0 的任何正整数次幂都是 0(这里处理的是 x 为 0 的特殊情况)。
  • 如果 n 为 0,则根据幂的定义,任何非零数的 0 次幂都是 1,因此返回 1。
2.2分治策略

函数通过递归调用自身来计算 xn/2 次幂,存储在变量 exp2 中。这一步是“分”的过程,即将原问题分解为规模更小但结构相似的子问题。

2.3合并结果

接下来,根据 n 的奇偶性来合并结果:

  • 如果 n 是奇数,则最终结果是 exp2 * exp2 * x,即 (x^(n/2))^2 * x。这是因为 x^n = (x^(n/2))^2 * xn 为奇数时。
  • 如果 n 是偶数,则最终结果是 exp2 * exp2,即 (x^(n/2))^2。这是因为 x^n = (x^(n/2))^2n 为偶数时。
2.4递归终止条件

除了上述的边界条件外,递归的终止还隐含在 n 不断减半的过程中。当 n 减小到 0 时,递归调用将返回 1,这是递归的基准情况。

2.5效率分析

这种分治方法的时间复杂度为 O(log n),因为它每次都将问题规模减半。与简单的迭代方法(如循环乘法)相比,这种方法在处理大指数时更加高效。

然而,需要注意的是,递归方法可能会消耗更多的栈空间,特别是当 n 非常大时。此外,由于递归深度可能很深,对于某些编译器或环境,可能存在栈溢出的风险。