halcon区域腐蚀膨胀算子_图像形态学之膨胀算子

本文介绍了Halcon中的区域膨胀算子,包括dilation1、dilation2和dilation_circle等函数,用于将图像中的物体与背景点合并,填补分割后物体的空洞。膨胀运算是通过结构元素的移动来实现,分为结构原点在内部和外部两种情况,详细解释了其工作原理。

膨胀运算在数字形态中的作用是把图像周围的背景点合并到物体中。如果两个物体之间距离比较近,那么膨胀运算可能会使这两个物体连接在一起。膨胀对填补图像分割后物体中的空洞很有用。

dilation1(Region, StructElement:RegionDilation:Iterations:)

功能: 使用用户自定义的结构元素对区域进行膨胀。结果元素是一个区域region,可由这些算子区域产生:gen_circle, gen_rectangle1, gen_rectangle2, gen_ellipse, draw_region, draw_region_polygon, gen_region_points等。

参数: Region(输入参数):输入区域

StructElement(输入参数):结构元素(区域)

RegionDilation(输出参数):膨胀后的区域

Iterations(输入参数):迭代次数

dilation2(Region, StructElement:RegionDilation:Row, Column, Iterations)

功能:根据参考点,使用用户自定义的结构元素对区域进行膨胀。具体用法参见erosion2.

参数: Region(输入参数):输入区域

StructElement(输入参数):结构元素

RegionDilation(输出参数):膨胀后的区域

Row(输入参数):参考点行坐标

Column(输入参数):参考点列坐标

Iterations(输入参数):迭代次数

dilation_circle(Region:RegionDilation:Radius:)

功能:使用圆形结构元素对区域进行膨胀。

参数: Region(输入参数):输入区域

RegionDilation(输出参数):膨胀后的区域

Radius(输入参数):圆形结构元素的半径

dilati

HALCON中,腐蚀膨胀是重要的形态学操作,主要针对图像中的白色(高亮)部分进行处理。膨胀是使图像中的高亮部分进行扩张,类似于“领域扩张”,会让效果图拥有比原图更大的高亮区域腐蚀则是使原图中的高亮部分被侵蚀,类似于“领域被蚕食”,效果图拥有比原图更小的高亮区域[^1]。 #### 膨胀算子 膨胀操作使用用户自定义的结构元素对区域进行膨胀,结果元素是一个区域 `region`。结构元素可由 `gen_circle`、`gen_rectangle1`、`gen_rectangle2`、`gen_ellipse`、`draw_region`、`draw_region_polygon`、`gen_region_points` 等算子产生区域来作为结构元素[^2]。 以下是一个简单的膨胀操作示例代码: ```python import HalconDotNet as HOperatorSet # 读取图像 image = HOperatorSet.ReadImage('your_image_path') # 生成圆形结构元素 structure_element = HOperatorSet.GenCircle(3, 3) # 进行膨胀操作 dilated_image = HOperatorSet.DilateImage(image, structure_element) ``` #### 腐蚀算子 腐蚀操作可以自己建立一个结构元素来腐蚀区域,结构元素同样可以由 `gen_circle`、`gen_rectangle1`、`gen_rectangle2`、`gen_ellipse`、`draw_region`、`gen_region_polygon`、`gen_region_points` 等算子产生[^3]。 `erosion1` 算子的语法为:`erosion1(Region, StructElement : RegionErosion : Iterations : )` 以下是一个腐蚀操作的示例代码: ```python import HalconDotNet as HOperatorSet # 读取图像 image = HOperatorSet.ReadImage('your_image_path') # 生成矩形结构元素 structure_element = HOperatorSet.GenRectangle1(3, 3, 10, 10) # 进行腐蚀操作 eroded_image = HOperatorSet.Erosion1(image, structure_element, 1) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值