c语言run函数,Tensorflow中的run()函数

本文详细介绍了TensorFlow中的run()函数,强调了它在构建神经网络时简化代码的作用。run()函数用于执行计算图,参数包括fetches(可执行的操作或张量)、feed_dict(用于替换图中张量值的字典),以及可选的options和run_metadata。此外,还讨论了会话Session的生命周期和中间张量的释放机制。
摘要由CSDN通过智能技术生成

1 run()函数存在的意义

run()函数可以让代码变得更加简洁,在搭建神经网络(一)中,经历了数据集准备、前向传播过程设计、损失函数及反向传播过程设计等三个过程,形成计算网络,再通过会话tf.Session().run()进行循环优化网络参数。这样可以使得代码变得更加简洁,可以集中处理多个图和会话,明确调用tf.Session().run()可能是一种更加直观的方法。

总而言之,我们先规划好计算图,再编写代码,之后调用tf.Session.run()。简洁高效。

在实际代码中,一般写成下种形式(会话Session模式)

with tf.Session() as sess:

sess.run( )

2 run() 语法

run(fetches, feed_dict=None, options=None, run_metadata=None)

tensorflow.python.client.session.Session实例中的方法对 ‘fetches’ 中的张量tensors进行评估和计算

该方法进行Tensorflow计算的第一个步骤,是将 ‘ feed_dict ’ 中的值替换为相应的输入值,通过运行必要的图形片段(necessary graph fragment)来执行每一个 ‘ Operation ’ 并评估 ‘ fetches ’ 中的每一个张量(evaluate every `Tensor` in `fetches`)

参数:

`fetches`参数可以是单个图元素(single graph element),也可以是任意嵌套的列表list,元组tuple,名称元组namedtuple࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值