1 run()函数存在的意义
run()函数可以让代码变得更加简洁,在搭建神经网络(一)中,经历了数据集准备、前向传播过程设计、损失函数及反向传播过程设计等三个过程,形成计算网络,再通过会话tf.Session().run()进行循环优化网络参数。这样可以使得代码变得更加简洁,可以集中处理多个图和会话,明确调用tf.Session().run()可能是一种更加直观的方法。
总而言之,我们先规划好计算图,再编写代码,之后调用tf.Session.run()。简洁高效。
在实际代码中,一般写成下种形式(会话Session模式)
with tf.Session() as sess:
sess.run( )
2 run() 语法
run(fetches, feed_dict=None, options=None, run_metadata=None)
tensorflow.python.client.session.Session实例中的方法对 ‘fetches’ 中的张量tensors进行评估和计算
该方法进行Tensorflow计算的第一个步骤,是将 ‘ feed_dict ’ 中的值替换为相应的输入值,通过运行必要的图形片段(necessary graph fragment)来执行每一个 ‘ Operation ’ 并评估 ‘ fetches ’ 中的每一个张量(evaluate every `Tensor` in `fetches`)
参数:
`fetches`参数可以是单个图元素(single graph element),也可以是任意嵌套的列表list,元组tuple,名称元组namedtuple