iphone5性能测试软件,地球最快智能手机!iPhone 5(A6)性能测试

地球最快智能手机!iPhone 5(A6)性能测试

出处:快科技 2012-09-23 11:11:14     作者:雪花 编辑:雪花[爆料]d5c21bddceb8f18d6ed747e695d82fd1.pngfa237b3517752e298599a26bca01f80b.png 收藏文章

4f8d98c0a77544071c6666e8504a0260.png036d7ac31131cf810b00e3e5bd91f4c2.png

iPhone 5发布会上,苹果对A6的介绍相当简单,只是说它的CPU速度和GPU速度都是A5处理器的2倍。随后经过分析发现,该处理器是苹果基于ARMv7指令集所设计出来的一款全新产品,其性能相当彪悍。

目前高端智能手机的处理器架构分为两大类,一是Cortex-A9架构,使用的厂商有NVIDIA、德州仪器、三星等,而另外一种则是高通S4处理器的Krait架构(它和ARM Cortex-A15很类似),与这些都不同的是,A6是苹果重新设计的一款处理器(基于ARMv7指令集)。

a3b6420c0dab41c00b59bdb00bd6400a.png

c9b991bba1b7f4d197c20cc871d2080f.png

苹果越是低调宣传A6,就越是有很多人想要弄懂它,现在国外科技媒体PCmag就对它的基准性能进行了测试,而最后得出的结论是,搭载该处理器的iPhone 5是这个地球上最快的智能手机,没有之一。

PCmag让iPhone 5接受了五个软件的测试,其中大体可以分为三类:第一是浏览器性能(Browsermark、Sunspider和Guimark 3),其而二是CPU性能测试(Geekbench),最后一个则是图形处理能力(GLBenchmark)。

4900fd495d32cf66ddfe1ec88f3c3290.png

首先来看看iPhone 5的浏览器性能,这分为三个方面分别是JavaScript性能(Sunspider)、HTML5交互性能(Guimark 3)以及整体浏览器性能(Browsermark),而为一同测试机型有三星Galaxy S3(Exynos 4412四核)和摩托的Razr M(高通S4双核),为了公平起见,它们都使用的是默认浏览器。

从最后的结果可以看出,Browsermark和Sunspider(分数越小越好)的成绩iPhone 5都是领先,而在Guimark 3中即HTML5交互性能上,它稍稍落后三星Galaxy S3。

在Geekbench(纯粹的CPU性能测试)测试环节中,iPhone 5的成绩都要强于对手,不过在GB Floating Point(浮点运算测试)上,其表现稍弱不敌Galaxy S3和Razr M。

最后测试的环节是它们的图形处理性能即GLBenchmark。Galaxy S3配备的是4.8寸720p屏幕,总像素数为921600,而iPhone 5是4寸屏,分辨率为1136×640,总像素数727400。在GLBenchmark的Offscreen测试模式下,iPhone 5的分数基本上是Galaxy S3和Razr M两倍以上(显示原始图形),这足以证明A6图形处理能力的强大。

昨天有A6的架构图已经显示,它内置的是三核GPU,其型号可能是主频为266MHz PowerVR SGX 543MP3。

测试之余,PCmag还放出了iPhone 5与前几代iPhone的测试成绩对比,性能提升非常显著。测试结束后PCmag总结称,新iPhone搭载的A6双核性能异常强悍,测试成绩基本上都领先竞争对手好几个级别,所以综合来看它是目前世界上最快的智能手机,没有之一。

317478fd6e8289dec90603970c7e1fd0.png

iPhone 5与前几代iPhone的测试成绩对比

相关阅读:

相关阅读:

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
内容概要:本文深入介绍了HarmonyOS文件系统及其在万物互联时代的重要性。HarmonyOS自2019年发布以来,逐步覆盖多种智能设备,构建了庞大的鸿蒙生态。文件系统作为其中的“数字管家”,不仅管理存储资源,还实现多设备间的数据协同。文章详细介绍了常见的文件系统类型,如FAT、NTFS、UFS、EXT3和ReiserFS,各自特点和适用场景。特别强调了HarmonyOS的分布式文件系统(hmdfs),它通过分布式软总线技术,打破了设备界限,实现了跨设备文件的无缝访问。此外,文章对比了HarmonyOS与Android、iOS文件系统的差异,突出了其在架构、跨设备能力和安全性方面的优势。最后,从开发者视角讲解了开发工具、关键API及注意事项,并展望了未来的技术发展趋势和对鸿蒙生态的影响。 适合人群:对操作系统底层技术感兴趣的开发者和技术爱好者,尤其是关注物联网和多设备协同的用户。 使用场景及目标:①理解HarmonyOS文件系统的工作原理及其在多设备协同中的作用;②掌握不同文件系统的特性和应用场景;③学习如何利用HarmonyOS文件系统进行应用开发,提升跨设备协同和数据安全。 阅读建议:本文内容详实,涵盖了从基础概念到高级开发技巧的多个层次,建议读者结合自身需求,重点关注感兴趣的部分,并通过实践加深理解。特别是开发者可参考提供的API示例和开发技巧,尝试构建基于HarmonyOS的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值