简介:iPortal是阿里云提供的企业级大数据可视化平台,能够帮助用户快速构建数据门户。本教程以“疫情大屏”为案例,讲解如何使用iPortal导入疫情数据文件(如nCoVdata.smwu和nCovdata.udbx),并通过数据准备、布局设计、数据绑定、样式调整、动态交互和发布分享等关键步骤,完成疫情大屏的制作。该实战项目适合初学者掌握数据大屏设计全流程,提升数据可视化与平台操作能力。
1. iPortal平台与疫情数据可视化概述
iPortal 是一款面向数据可视化与大屏展示的企业级平台,具备强大的数据接入、交互设计与可视化配置能力。本章将重点介绍 iPortal 的核心功能模块,包括数据源管理、可视化组件配置及大屏布局设计,帮助读者建立对平台整体架构的认知。
在新冠疫情背景下,实时、直观地呈现疫情传播趋势、区域分布和防控成效成为政府与企业决策的重要支撑。iPortal 凭借其灵活的数据绑定机制与丰富的可视化组件,能够高效实现疫情数据的动态展示与交互分析,为后续章节的实战操作奠定理论基础。
2. 疫情数据的准备与导入
在疫情数据可视化过程中,数据准备与导入是整个流程的起点,也是决定后续分析与展示质量的关键环节。iPortal平台支持多种格式的疫情数据导入,并提供标准化的数据处理机制。本章将从数据格式支持、数据获取与组织、数据导入操作及常见问题处理四个方面展开,详细阐述如何为疫情数据可视化做好基础准备。
2.1 iPortal支持的数据格式与结构
为了确保数据能够被iPortal平台高效解析与展示,理解其支持的数据格式与结构规范至关重要。
2.1.1 支持的文件类型(如.smwu、.udbx)
iPortal平台支持多种文件格式的数据导入,其中主要包括:
| 文件格式 | 说明 |
|---|---|
.smwu | 超图Web数据集包,包含空间数据和属性数据,适用于地图可视化 |
.udbx | 超图通用数据库文件,支持结构化数据存储 |
.csv | 通用的文本格式,适合非空间数据 |
.json | 可用于描述结构化或嵌套数据 |
.xlsx | Excel表格文件,支持多工作表数据 |
对于疫情数据,通常推荐使用 .csv 或 .xlsx 格式进行导入,因其结构清晰、易于编辑和维护。若需与地图数据结合,则可将地理信息与疫情统计信息合并为 .smwu 格式。
2.1.2 数据格式要求与规范
为了确保导入数据的准确性和可操作性,需遵循以下数据格式规范:
- 字段命名规范 :字段名应具有语义清晰性,如
Province表示省份、Confirmed表示确诊人数。 - 数据类型统一 :数值字段应为整数或浮点型,时间字段应为标准时间格式(如
YYYY-MM-DD)。 - 编码格式 :建议使用UTF-8编码以支持中文字符。
- 空值处理 :空值应使用
NULL或NaN标识,避免空白字段导致解析错误。
以下是一个典型的疫情数据CSV文件结构示例:
Date,Province,Confirmed,Recovered,Deaths
2023-01-01,Hubei,67800,66500,1300
2023-01-01,Guangdong,1200,1100,0
2023-01-01,Beijing,900,850,10
代码示例:读取CSV并展示字段结构
import pandas as pd
# 读取CSV文件
df = pd.read_csv("covid19_data.csv")
# 显示前几行数据
print(df.head())
代码解释 :
- pd.read_csv() :用于读取CSV格式的疫情数据。
- df.head() :输出前5行数据,用于快速查看字段结构与数据格式。
执行结果:
Date Province Confirmed Recovered Deaths
0 2023-01-01 Hubei 67800 66500 1300
1 2023-01-01 Guangdong 1200 1100 0
2 2023-01-01 Beijing 900 850 10
该结果展示了字段名称、数据类型以及部分样本数据,便于后续在iPortal中进行字段映射与可视化配置。
2.2 疫情数据文件的获取与组织
数据获取是整个数据准备流程的基础,而数据的组织方式则直接影响后续的导入效率与可视化准确性。
2.2.1 数据源获取途径
疫情数据主要来源于以下几个渠道:
| 数据来源 | 特点 |
|---|---|
| 国家卫健委官网 | 官方发布,数据权威,更新频率高 |
| GitHub开源项目 | 如JHU CSSE的全球疫情数据,结构化强,支持API获取 |
| 各省市卫健委 | 地区性数据详细,更新及时 |
| 第三方数据平台 | 如百度、腾讯健康等,数据更新快但需验证准确性 |
示例:使用Python获取GitHub上的疫情数据
import pandas as pd
# 从GitHub URL读取CSV数据
url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv"
df = pd.read_csv(url)
# 显示部分数据
print(df.head())
代码解释 :
- 使用 pandas 直接从GitHub URL读取CSV数据,适用于自动化数据获取。
- 适用于构建数据自动更新流程,为iPortal提供实时数据源。
2.2.2 数据文件的结构化组织
为了便于iPortal平台识别与处理,建议对疫情数据进行结构化组织:
- 按时间维度组织 :按日期分列,便于时间轴动画展示。
- 按地区维度组织 :每个地区单独一个sheet或文件,便于区域对比。
- 统一字段命名 :确保字段名一致,避免重复或歧义。
例如,一个结构化组织的疫情数据目录如下:
data/
├── 2023/
│ ├── china_confirmed.csv
│ ├── china_deaths.csv
│ └── china_recovered.csv
└── 2024/
├── china_confirmed.csv
└── china_deaths.csv
这种结构便于后续在iPortal中按时间维度加载不同年份的数据,实现动态可视化。
2.3 在iPortal中导入疫情数据
iPortal提供了便捷的数据导入功能,支持多种格式的上传与解析。
2.3.1 数据上传流程
在iPortal中导入疫情数据的基本流程如下:
- 登录iPortal平台,进入“数据资源管理”页面;
- 点击“新增数据源”,选择文件类型(如CSV、Excel);
- 上传本地文件或输入在线数据URL;
- 配置字段映射关系;
- 点击“提交”完成数据上传。
Mermaid流程图:数据上传流程
graph TD
A[登录iPortal] --> B[进入数据资源管理页面]
B --> C[点击新增数据源]
C --> D[选择文件类型]
D --> E[上传本地文件或输入URL]
E --> F[配置字段映射]
F --> G[提交完成上传]
2.3.2 数据导入后的初步查看与验证
导入完成后,可在iPortal的数据预览界面查看数据字段、样本数据及字段类型是否正确。
- 字段类型识别 :iPortal会自动识别字段类型,如字符串、整数、日期等;
- 异常数据提示 :若字段中存在异常值或空值,系统会提示用户处理;
- 数据预览 :用户可查看前10条数据,验证数据是否导入正确。
2.4 数据导入常见问题与处理
在实际导入过程中,常会遇到文件格式不兼容、字段缺失等问题,需掌握相应的处理方法。
2.4.1 文件格式不兼容问题
常见问题及解决方法如下:
| 问题描述 | 原因 | 解决方法 |
|---|---|---|
| 文件无法识别 | 文件扩展名不匹配 | 检查文件扩展名,必要时手动重命名 |
| 编码错误 | 非UTF-8编码 | 使用文本编辑器转换为UTF-8格式 |
| 数据结构错误 | 字段缺失或格式不一致 | 使用Excel或Python预处理数据 |
示例:使用Python转换CSV编码
import pandas as pd
# 读取GBK编码的CSV文件
df = pd.read_csv("gbk_covid_data.csv", encoding='gbk')
# 保存为UTF-8编码
df.to_csv("utf8_covid_data.csv", index=False, encoding='utf-8')
逻辑分析 :
- encoding='gbk' :用于读取GBK编码的文件;
- encoding='utf-8' :保存为UTF-8格式,确保iPortal兼容。
2.4.2 数据缺失与字段不匹配的解决方法
- 数据缺失 :使用默认值填充或删除缺失字段;
- 字段不匹配 :检查字段名称是否与iPortal模板一致,必要时手动重命名;
- 字段类型错误 :强制转换字段类型,如将字符串转为整数。
示例:处理缺失值
import pandas as pd
# 读取数据
df = pd.read_csv("covid19_data.csv")
# 填充缺失值
df.fillna(0, inplace=True)
# 保存处理后的数据
df.to_csv("cleaned_covid19_data.csv", index=False)
参数说明 :
- fillna(0) :将所有缺失值替换为0;
- inplace=True :在原数据上修改;
- index=False :保存时不包含索引列。
本章详细介绍了疫情数据在iPortal平台中的准备与导入流程,包括支持的文件格式、数据获取与组织方法、导入操作步骤及常见问题处理。下一章将深入探讨疫情数据的清洗与预处理,为后续高质量的可视化展示奠定基础。
3. 疫情数据的清洗与预处理
数据清洗与预处理是数据分析流程中至关重要的一环。在疫情数据可视化项目中,原始数据往往包含噪声、缺失值、格式不一致等问题,直接用于可视化可能导致结果偏差甚至误导。本章将详细介绍在iPortal平台中如何进行疫情数据的清洗与预处理,涵盖数据质量控制、字段处理、异常值识别、缺失值填充、标准化等关键步骤,并提供完整的操作指南和代码示例。
3.1 疫情数据清洗的意义与目标
3.1.1 数据质量对可视化效果的影响
高质量的数据是构建有效可视化图表的前提。如果原始疫情数据存在缺失、错误、重复等问题,将直接影响图表的准确性和可信度。例如,若某地区的确诊人数字段缺失或填写错误,地图热力图可能无法正确反映疫情分布;若时间字段格式不统一,折线图的时间轴可能无法正确排序,导致趋势分析失真。
在iPortal平台中,数据清洗的最终目标是提升数据一致性、准确性和完整性,从而为后续的可视化展示和分析提供坚实基础。
3.1.2 清洗的主要内容与流程
疫情数据清洗主要包括以下几个方面:
| 清洗环节 | 说明 |
|---|---|
| 字段检查 | 确保字段名称统一、无冗余 |
| 数据类型 | 检查字段数据类型是否匹配(如日期、数值) |
| 缺失值处理 | 识别缺失值并进行填充或删除 |
| 异常值检测 | 检测超出合理范围的数据(如负数确诊人数) |
| 数据去重 | 去除重复记录,避免统计偏差 |
| 格式统一 | 统一日期格式、单位、行政区划名称等 |
清洗流程如下图所示:
graph TD
A[原始数据导入] --> B[字段检查与重命名]
B --> C[数据类型验证]
C --> D[缺失值处理]
D --> E[异常值识别与处理]
E --> F[数据去重]
F --> G[格式标准化]
G --> H[清洗结果验证]
3.2 使用iPortal进行数据清洗
3.2.1 字段筛选与重命名
在iPortal平台中,可以通过数据集管理界面进行字段筛选与重命名。假设我们导入的疫情数据文件包含如下字段:
| 字段名 | 说明 |
|---|---|
| region | 地区名称 |
| date | 统计日期 |
| confirmed | 确诊人数 |
| recovered | 治愈人数 |
| deaths | 死亡人数 |
| test_count | 检测人数 |
| hospital_beds | 医疗床位数 |
| extra_info | 附加信息(如备注) |
其中 extra_info 字段对于可视化展示帮助较小,可以考虑删除。同时,我们希望将 confirmed 改为 Confirmed Cases ,以提高可读性。
操作步骤如下:
- 进入iPortal数据集管理界面,选择目标数据集;
- 点击“字段管理”;
- 勾选
region,date,confirmed,recovered,deaths,test_count,hospital_beds; - 对
confirmed字段点击“重命名”,输入Confirmed Cases; - 保存更改。
代码示例:使用iPortal脚本进行字段处理
# 使用iPortal SDK对字段进行筛选与重命名
from iportal_sdk import Dataset
# 初始化数据集对象
dataset = Dataset("covid19_data")
# 筛选需要的字段
selected_fields = ["region", "date", "confirmed", "recovered", "deaths", "test_count", "hospital_beds"]
dataset.select_fields(selected_fields)
# 重命名字段
dataset.rename_field("confirmed", "Confirmed Cases")
# 提交修改
dataset.save()
逐行解释:
- 第1行:引入iPortal SDK中的Dataset类;
- 第4行:创建数据集对象,指定数据集ID为
covid19_data; - 第7行:定义需要保留的字段列表;
- 第8行:调用
select_fields方法,筛选出指定字段; - 第11行:将
confirmed字段重命名为Confirmed Cases; - 第14行:保存数据集修改。
3.2.2 异常值识别与处理
在疫情数据中,异常值通常表现为不合理的数值。例如:
- 某天的累计确诊人数比前一天还少;
- 治愈人数大于确诊人数;
- 某地的死亡人数为负数。
在iPortal中,可以通过脚本或可视化方式识别这些异常值并进行处理。
示例:使用iPortal脚本识别并修正异常值
# 识别并修正异常值
from iportal_sdk import Dataset
dataset = Dataset("covid19_data")
# 获取数据
data = dataset.get_data()
# 检查治愈人数是否超过确诊人数
for index, row in data.iterrows():
if row['recovered'] > row['confirmed']:
print(f"发现异常记录:ID {index},治愈人数 {row['recovered']} > 确诊人数 {row['confirmed']}")
data.at[index, 'recovered'] = row['confirmed'] # 修正治愈人数为确诊人数
# 检查死亡人数是否为负数
for index, row in data.iterrows():
if row['deaths'] < 0:
print(f"发现异常记录:ID {index},死亡人数为负数 {row['deaths']}")
data.at[index, 'deaths'] = 0 # 修正为0
# 更新数据集
dataset.update_data(data)
逐行解释:
- 第1-3行:导入SDK并初始化数据集;
- 第6行:获取当前数据集的所有数据;
- 第9-14行:遍历数据,若治愈人数超过确诊人数,则将其修正为确诊人数;
- 第17-21行:遍历数据,若死亡人数为负数,则修正为0;
- 第24行:将修正后的数据更新回iPortal平台。
3.3 数据预处理操作
3.3.1 数据类型转换
确保每个字段的数据类型正确,是数据预处理的重要步骤。例如, date 字段应为日期类型, confirmed 应为整数。
在iPortal中,可以使用如下方式设置字段类型:
# 设置字段类型
dataset.set_field_type("date", "datetime")
dataset.set_field_type("confirmed", "int")
dataset.set_field_type("recovered", "int")
dataset.set_field_type("deaths", "int")
3.3.2 缺失值填充与数据标准化
缺失值处理
在疫情数据中,某些字段可能存在缺失值。例如,某天的 hospital_beds 未填写。
处理方式如下:
# 填充缺失值
data['hospital_beds'].fillna(data['hospital_beds'].median(), inplace=True)
该方法使用中位数填充缺失值,避免对整体数据分布造成较大影响。
数据标准化
为了使不同字段具有可比性,可以对数值型字段进行标准化处理。例如,将 confirmed 、 recovered 等字段进行Z-score标准化:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
data[['Confirmed Cases', 'recovered', 'deaths']] = scaler.fit_transform(
data[['Confirmed Cases', 'recovered', 'deaths']]
)
逐行解释:
- 第1行:引入标准化模块;
- 第3行:创建标准化器;
- 第4-5行:对指定字段进行标准化处理。
3.4 清洗结果验证与导出
3.4.1 清洗后数据的查看与测试
在iPortal平台中,可通过以下方式验证清洗结果:
- 数据预览 :进入数据集详情页,查看前100条数据,确认字段是否正确、格式是否统一;
- 数据统计 :查看字段统计信息(最大值、最小值、平均值)是否合理;
- 异常检查 :运行异常检测脚本,确认无异常值残留。
3.4.2 预处理数据的保存与导出方式
在iPortal中,清洗后的数据可保存为新的数据集,也可导出为文件供其他系统使用。
保存为新数据集
# 保存为新数据集
new_dataset = dataset.save_as_new("cleaned_covid19_data")
print(f"清洗后数据已保存为新数据集,ID为:{new_dataset.id}")
导出为CSV文件
# 导出为CSV
new_dataset.export_to_file("cleaned_covid19_data.csv", format="csv")
导出为JSON格式
# 导出为JSON
new_dataset.export_to_file("cleaned_covid19_data.json", format="json")
后续章节关联:
清洗和预处理完成的数据将作为后续章节中地图组件、图表组件的数据源,因此本章的操作对后续可视化展示的准确性至关重要。在下一章中,我们将详细介绍如何在iPortal中进行疫情数据的可视化大屏布局设计与组件配置。
4. 大屏布局设计与组件配置
大屏布局设计与组件配置是疫情数据可视化项目中最关键的交互界面构建环节。一个优秀的可视化大屏不仅需要数据展示清晰,还需要具备良好的用户体验和信息传达能力。本章将从布局设计的基本原则出发,深入讲解iPortal平台中大屏组件的分类与配置方法,以及组件之间的联动与交互设置技巧,帮助开发者构建高效、直观的疫情数据大屏展示系统。
4.1 大屏布局设计原则
大屏布局设计的核心在于信息的高效传递与视觉体验的优化。设计时需要兼顾视觉逻辑、信息优先级、分辨率适配等多个方面,以确保数据呈现清晰、用户操作便捷。
4.1.1 视觉逻辑与信息优先级
视觉逻辑决定了用户在大屏上获取信息的路径。设计时应遵循“从左到右、从上到下”的阅读习惯,将关键数据放置在显眼位置(如屏幕中央或左上角)。信息优先级可通过字体大小、颜色对比、空间占比等方式进行强化。例如,累计确诊人数、死亡人数等核心指标应采用大字体、高对比度的颜色进行突出展示。
以下是一个典型的疫情数据大屏布局结构示意图:
graph TD
A[顶部标题栏] --> B[全国疫情数据概览]
C[左侧地图组件] --> D[各省市疫情分布]
E[右侧图表组件] --> F[新增趋势折线图]
G[底部表格组件] --> H[详细数据列表]
通过该布局结构,用户可以快速定位关键信息并深入查看细节数据。
4.1.2 大屏尺寸与分辨率适配
iPortal支持多种屏幕尺寸的适配,包括1920x1080、3840x2160等主流分辨率。设计时应采用响应式布局策略,确保在不同分辨率下组件的排列与展示效果一致。建议使用iPortal的“自动缩放”功能,该功能可自动调整组件尺寸和位置,避免因分辨率变化导致的显示异常。
4.2 iPortal中大屏组件的分类与功能
iPortal平台提供了丰富的可视化组件,主要包括基础组件、动态组件两类。合理选择和配置这些组件,是实现疫情数据可视化效果的关键。
4.2.1 基础组件(文本、图片)
基础组件主要用于静态信息展示,如标题、说明文字、Logo等。以下是常见的基础组件配置示例:
{
"type": "text",
"content": "全国新冠疫情实时数据",
"position": {
"x": 50,
"y": 30
},
"style": {
"fontSize": "24px",
"color": "#ffffff",
"fontWeight": "bold"
}
}
代码解释:
- type :组件类型,此处为文本组件。
- content :显示内容。
- position :组件在大屏上的坐标位置。
- style :样式设置,包括字体大小、颜色、加粗等。
该组件可作为大屏的主标题,固定在顶部中央位置,确保信息清晰可读。
4.2.2 动态组件(地图、图表、表格)
动态组件用于实时展示疫情数据,支持数据绑定与交互操作。以下是地图组件的配置示例:
{
"type": "map",
"dataSource": "covid19_province",
"region": "china",
"position": {
"x": 100,
"y": 100
},
"size": {
"width": 800,
"height": 600
},
"visualMap": {
"min": 0,
"max": 10000,
"color": ["#f7fbff", "#08306b"]
}
}
代码解释:
- type :地图组件。
- dataSource :绑定的数据源名称。
- region :地图区域,此处为中国。
- position 和 size :组件在屏幕上的位置和大小。
- visualMap :热力图配置,用于根据确诊人数映射颜色。
通过地图组件,用户可以直观看到各省市的疫情分布情况。
4.3 疫情大屏组件的布局与拖拽配置
iPortal平台提供了可视化的拖拽式布局工具,开发者可以自由添加、移动、调整组件的位置与样式,实现灵活的大屏布局。
4.3.1 组件添加与位置调整
在iPortal编辑界面中,可以通过“组件库”拖拽所需组件至画布。例如,拖拽一个“柱状图”组件后,可以在右侧属性面板中设置其位置参数:
{
"position": {
"x": 1000,
"y": 200
},
"size": {
"width": 600,
"height": 400
}
}
参数说明:
- x 、 y :组件左上角的坐标。
- width 、 height :组件的宽高,单位为像素。
4.3.2 组件样式与属性设置
组件样式可通过iPortal的图形化界面进行设置,也可通过JSON格式的配置代码进行定义。以下是一个表格组件的样式配置示例:
{
"type": "table",
"dataSource": "covid19_daily",
"columns": [
{"field": "date", "title": "日期"},
{"field": "confirmed", "title": "新增确诊"},
{"field": "deaths", "title": "新增死亡"},
{"field": "recovered", "title": "新增治愈"}
],
"style": {
"headerBgColor": "#4e79a7",
"rowBgColor": "#f2f2f2",
"fontColor": "#333333"
}
}
参数说明:
- columns :表格字段与标题映射。
- style :表头背景色、行背景色、字体颜色等样式设置。
该表格可展示每日疫情数据,帮助用户快速查看历史趋势。
4.4 组件之间的联动与交互配置
大屏的交互性是提升用户体验的关键。iPortal支持组件之间的数据联动与用户行为配置,开发者可以通过事件绑定实现组件间的动态交互。
4.4.1 组件间数据联动设置
数据联动是指一个组件的数据变化触发另一个组件的数据更新。例如,点击地图上的某省区域后,下方的图表组件自动展示该省的疫情数据。
以下是一个联动配置示例:
{
"source": "map_province",
"target": "chart_confirmed",
"event": "click",
"mapping": {
"province": "province"
}
}
参数说明:
- source :数据来源组件,即地图组件。
- target :目标组件,即图表组件。
- event :触发事件类型,如点击。
- mapping :字段映射,表示将地图点击事件中的省份字段传递给图表组件。
4.4.2 用户交互行为的配置方法
用户交互行为包括点击、悬停、选择等操作。开发者可以通过iPortal的事件配置功能为组件添加交互逻辑。例如,点击表格中的某一行,弹出该日期的详细数据:
function onTableRowClick(rowData) {
alert("日期:" + rowData.date + "\n新增确诊:" + rowData.confirmed + "\n新增死亡:" + rowData.deaths);
}
逻辑分析:
- onTableRowClick :表格行点击事件回调函数。
- rowData :当前点击行的数据对象。
- alert :弹出提示框,显示详细数据。
该交互方式增强了用户对数据的探索能力,提升了数据的可用性。
通过本章的学习,开发者可以掌握iPortal平台中大屏布局设计的核心原则、组件分类与配置方法,以及组件之间的联动与交互机制。这些技能将为后续的疫情数据绑定与动态展示打下坚实基础。
5. 疫情数据绑定与动态展示
在疫情数据可视化过程中,数据绑定是实现动态展示的核心环节。本章将围绕iPortal平台中的地图、表格、图表等组件,详细讲解如何将清洗后的疫情数据与可视化组件进行关联,并实现动态更新和实时展示。通过本章的学习,您将掌握疫情数据绑定的核心逻辑、组件配置方法,以及动态刷新机制的实现方式。
5.1 地图组件的疫情数据绑定
地图组件是疫情可视化中最重要的展示手段之一,通过地图可以直观呈现各地区的疫情分布情况。要实现地图的动态展示,首先需要将地理数据与疫情数据进行绑定。
5.1.1 地理数据与疫情数据的关联
iPortal支持多种地理数据格式,如GeoJSON、TopoJSON等。在进行数据绑定前,需确保地理数据与疫情数据具有相同的地理标识字段(如地区编码、省名、城市名等)。例如,某地理数据中包含“name”字段表示城市名称,疫情数据中也包含“city_name”字段,则可通过这两个字段进行关联。
// 示例:在iPortal中配置地图数据绑定
const geoData = {
type: "FeatureCollection",
features: [
{
type: "Feature",
properties: {
name: "北京市"
},
geometry: {
type: "Polygon",
coordinates: [...]
}
}
]
};
const epidemicData = [
{
city_name: "北京市",
confirmed: 1200,
recovered: 900
}
];
// 使用iPortal API进行数据绑定
iportal.map.bindData(geoData, epidemicData, {
keyField: "name", // 地理数据字段
dataKey: "city_name", // 疫情数据字段
valueField: "confirmed" // 要绑定的疫情字段
});
代码分析:
-
geoData表示地图的地理数据结构,通常为GeoJSON格式。 -
epidemicData是清洗后的疫情数据。 -
keyField和dataKey用于匹配地理数据与疫情数据的字段。 -
valueField表示要绑定到地图颜色映射的数据字段(如确诊病例数)。
5.1.2 地图颜色与数据值的映射配置
iPortal支持多种颜色映射方式,如线性渐变、分段颜色、热力图等。开发者可根据疫情数据分布情况,灵活配置颜色映射规则。
| 映射类型 | 描述 | 适用场景 |
|---|---|---|
| 线性映射 | 颜色随数据值连续变化 | 数据分布较均匀 |
| 分段映射 | 按区间设置不同颜色 | 数据分布不均,需突出关键区间 |
| 热力图映射 | 通过颜色深浅表示密度 | 数据密集区域展示 |
操作步骤:
- 在iPortal编辑器中选择地图组件。
- 进入“样式”配置页面,选择“颜色映射”。
- 选择映射类型并设置区间阈值或颜色渐变。
- 预览效果并保存配置。
// 示例:配置颜色映射规则
iportal.map.setColorMapping({
type: "step",
steps: [
{ value: 0, color: "#f7fbff" },
{ value: 100, color: "#9ecae1" },
{ value: 500, color: "#3182bd" },
{ value: 1000, color: "#08306b" }
]
});
代码分析:
-
type: "step"表示使用分段映射。 -
steps数组定义了不同值区间的颜色。 - 每个步骤包含
value和color,表示该值以下的颜色。
5.2 表格组件的疫情数据展示
表格组件是展示疫情数据细节的重要方式,尤其适用于需要查看具体数值和进行筛选、排序的场景。
5.2.1 表格字段与数据源绑定
在iPortal中,表格组件支持与JSON、CSV等多种数据源绑定。绑定时需指定字段映射关系。
// 示例:表格数据绑定
const tableConfig = {
columns: [
{ field: "city_name", title: "城市" },
{ field: "confirmed", title: "确诊人数" },
{ field: "recovered", title: "治愈人数" },
{ field: "deaths", title: "死亡人数" }
],
dataSource: epidemicData
};
iportal.table.create(tableConfig);
代码分析:
-
columns定义表格列,field对应数据源字段,title为列标题。 -
dataSource为绑定的数据源,通常为清洗后的疫情数据数组。
5.2.2 排序、筛选与分页设置
iPortal表格组件支持前端与后端分页、排序、筛选等高级功能。以下为启用排序和分页的配置示例:
// 启用排序与分页
iportal.table.create({
columns: [...],
dataSource: epidemicData,
sort: true,
pagination: {
pageSize: 20,
total: epidemicData.length,
showSizeChanger: true
},
filters: {
confirmed: {
type: "range",
label: "确诊人数",
range: [0, 5000]
}
}
});
代码分析:
-
sort: true启用列排序功能。 -
pagination配置分页参数,pageSize表示每页显示条目数。 -
filters配置筛选条件,支持范围、关键词、下拉选择等类型。
5.3 图表组件的数据绑定与可视化呈现
图表组件(如折线图、柱状图、饼图)是展示疫情趋势和比例关系的关键工具。
5.3.1 折线图、柱状图与饼图的配置
iPortal支持多种图表类型,以下为柱状图与饼图的配置示例:
// 柱状图配置示例
iportal.chart.create({
type: "bar",
container: "chart-container",
data: epidemicTrendData,
xField: "date",
yField: "confirmed",
seriesField: "region"
});
// 饼图配置示例
iportal.chart.create({
type: "pie",
container: "pie-container",
data: [
{ type: "治愈", value: 900 },
{ type: "死亡", value: 50 },
{ type: "在治", value: 250 }
],
angleField: "value",
colorField: "type"
});
代码分析:
-
type指定图表类型。 -
data为数据源,格式为数组。 -
xField和yField用于柱状图的坐标轴字段。 -
angleField和colorField用于饼图的扇区角度与颜色映射。
5.3.2 数据动态变化趋势的展示方式
iPortal支持动态图表更新,开发者可通过API实时推送数据:
// 动态更新图表数据
function updateChart(newData) {
iportal.chart.update("chart-container", {
data: newData
});
}
// 示例:定时更新数据
setInterval(() => {
fetch("/api/epidemic/trend").then(res => res.json()).then(data => {
updateChart(data);
});
}, 60000); // 每分钟更新一次
代码分析:
-
updateChart函数用于更新图表数据。 - 使用
setInterval实现定时拉取新数据并更新图表。 -
fetch请求后端接口获取最新疫情趋势数据。
5.4 大屏动态刷新与实时数据更新
为了确保疫情数据的实时性,大屏系统需支持自动刷新和实时推送功能。
5.4.1 数据刷新机制与周期设置
iPortal支持多种刷新策略,包括定时轮询、WebSocket推送等。以下是定时刷新的配置示例:
// 设置全局数据刷新周期
iportal.refresh.setInterval(30000); // 每30秒刷新一次
// 为特定组件设置刷新
iportal.refresh.addComponent("map-component", 60000); // 地图每60秒刷新一次
代码分析:
-
setInterval设置全局刷新周期。 -
addComponent为指定组件设置单独刷新周期。
5.4.2 实时数据推送与更新策略
使用WebSocket可实现服务器主动推送数据,提升实时性。以下为WebSocket数据接收与更新示例:
const ws = new WebSocket("wss://epidemic-data-stream");
ws.onmessage = function(event) {
const data = JSON.parse(event.data);
if (data.type === "update") {
iportal.map.updateData(data.map);
iportal.chart.updateData(data.chart);
iportal.table.updateData(data.table);
}
};
代码分析:
- 创建WebSocket连接,监听服务器推送。
-
onmessage事件处理接收的数据。 - 根据数据类型更新地图、图表、表格组件内容。
流程图说明:
graph TD
A[服务器数据更新] --> B[WebSocket推送]
B --> C[前端接收数据]
C --> D{判断数据类型}
D -->|地图数据| E[iPortal.map.updateData()]
D -->|图表数据| F[iPortal.chart.updateData()]
D -->|表格数据| G[iPortal.table.updateData()]
流程图说明:
- 服务器端检测到疫情数据更新。
- 通过WebSocket推送更新数据到前端。
- 前端解析数据并根据类型调用不同组件的更新方法。
- 实现大屏内容的实时刷新与动态展示。
本章详细讲解了疫情数据在iPortal平台中的绑定与动态展示方式,包括地图、表格、图表等核心组件的数据绑定方法、颜色映射配置、筛选排序设置,以及动态刷新与实时推送机制的实现。下一章将围绕疫情大屏的发布与模板复用进行深入讲解。
6. 疫情大屏发布与模板复用
6.1 大屏视觉样式优化技巧
在疫情数据可视化大屏设计完成后,视觉样式的优化是提升用户体验和信息传达效率的重要环节。优秀的视觉设计不仅能增强视觉冲击力,还能提升数据的可读性与交互性。
6.1.1 配色方案与风格统一
选择合适的配色方案是视觉优化的核心。建议采用以下配色原则:
- 主色调 :以蓝色系为主,象征医疗、科技与信任,适用于疫情数据展示。
- 对比色 :使用红色或橙色突出关键数据(如新增病例、死亡人数等)。
- 背景色 :深色背景(如深灰或黑色)能提升科技感,适合大屏展示。
例如,iPortal支持自定义主题样式,可通过如下方式修改全局配色:
/* 自定义主题配置 */
:root {
--primary-color: #007BFF; /* 主色调 */
--highlight-color: #FF4D4D; /* 高亮颜色 */
--background-color: #1A1A1A; /* 背景色 */
}
6.1.2 字体与图标的选择与调整
字体应选择清晰易读的无衬线字体,如 Roboto 或 Open Sans 。图标建议使用统一风格的矢量图标库,如 Font Awesome 或 iPortal 自带图标库。
在 iPortal 中可通过组件样式面板设置字体大小、颜色和图标样式:
{
"fontFamily": "Roboto",
"fontSize": "16px",
"color": "#FFFFFF",
"icon": "fa fa-virus"
}
6.2 权限管理与大屏发布设置
完成大屏设计与优化后,合理的权限配置和发布流程是保障数据安全与访问控制的关键。
6.2.1 用户权限配置与访问控制
iPortal 支持基于角色的权限管理(RBAC),可设置不同用户组对大屏的查看、编辑和管理权限。
操作步骤如下:
- 登录 iPortal 后进入【权限管理】模块;
- 创建角色(如“疫情监控员”、“管理员”);
- 分配权限:
- 查看权限:允许访问大屏;
- 编辑权限:允许修改大屏内容;
- 管理权限:允许发布与配置。
权限配置示例:
| 角色名称 | 查看权限 | 编辑权限 | 管理权限 |
|---|---|---|---|
| 普通用户 | ✅ | ❌ | ❌ |
| 疫情监控员 | ✅ | ✅ | ❌ |
| 管理员 | ✅ | ✅ | ✅ |
6.2.2 发布流程与访问方式配置
发布大屏的操作流程如下:
- 在编辑界面点击【发布】按钮;
- 选择发布环境(如测试环境、生产环境);
- 配置访问链接,如:
- 内网访问:http://portal.local/covid19
- 外网访问:https://portal.example.com/covid19
发布后可通过浏览器直接访问,也可嵌入至其他系统中使用 iframe:
<iframe src="https://portal.example.com/covid19" width="100%" height="800" frameborder="0"></iframe>
6.3 大屏模板的导出与复用
为提升开发效率,iPortal 支持将已配置好的疫情大屏保存为模板,并在后续项目中快速复用。
6.3.1 模板导出的格式与步骤
导出模板的操作流程如下:
- 在编辑界面点击【导出】按钮;
- 选择导出格式(推荐使用
.json格式); - 下载模板文件(如
covid19_dashboard_template.json)。
模板文件结构示例如下:
{
"name": "疫情大屏模板",
"version": "1.0",
"components": [
{
"type": "map",
"data": "geo_covid_data",
"style": {
"theme": "blue",
"zoom": 1.5
}
},
{
"type": "table",
"data": "covid19_cases",
"columns": ["地区", "累计确诊", "新增确诊", "治愈人数"]
}
]
}
6.3.2 模板在不同项目中的复用方式
导入模板的步骤如下:
- 进入新项目后,点击【导入模板】;
- 上传
.json文件; - 系统自动加载模板配置,并适配当前项目的数据源。
⚠️ 注意:模板中引用的数据源需与新项目的数据字段匹配,否则需手动调整字段映射。
6.4 疫情大屏项目的总结与后续优化建议
6.4.1 项目总结与经验复盘
本项目通过 iPortal 实现了疫情数据的可视化展示,涵盖了数据准备、清洗、大屏布局、组件配置、数据绑定、样式优化与发布等全流程。核心经验包括:
- 数据清洗与标准化是确保可视化质量的前提;
- 组件联动与交互设计增强了用户体验;
- 模板化复用提升了项目迭代效率;
- 权限管理保障了数据安全性。
6.4.2 持续优化与迭代方向
未来可从以下几个方向进行优化:
- 数据源扩展 :接入实时疫情API,实现自动更新;
- 性能优化 :对大数据量图表进行分页加载与缓存处理;
- 移动端适配 :开发响应式大屏,支持移动设备查看;
- AI分析模块 :集成疫情预测模型,提供趋势分析功能。
graph TD
A[疫情数据可视化项目] --> B[数据准备]
B --> C[数据清洗]
C --> D[大屏布局]
D --> E[组件配置]
E --> F[数据绑定]
F --> G[样式优化]
G --> H[权限配置]
H --> I[模板导出]
I --> J[项目复用]
下一章节将围绕“疫情大屏在不同场景下的应用案例”展开深入探讨。
简介:iPortal是阿里云提供的企业级大数据可视化平台,能够帮助用户快速构建数据门户。本教程以“疫情大屏”为案例,讲解如何使用iPortal导入疫情数据文件(如nCoVdata.smwu和nCovdata.udbx),并通过数据准备、布局设计、数据绑定、样式调整、动态交互和发布分享等关键步骤,完成疫情大屏的制作。该实战项目适合初学者掌握数据大屏设计全流程,提升数据可视化与平台操作能力。
162

被折叠的 条评论
为什么被折叠?



