遗传算法是计算机科学,遗传算法北京大学计算机科学技术研究所.pdf

遗传算法北京大学计算机科学技术研究所

遗传算法

 遗传算法是智能优化方法中应用最为广泛也最

为成功的算法

 介绍遗传算法的产生发展与基本原理

 讨论遗传算法的基本构成和模板理论

 介绍由不同编码方式、选择压力的调整、不同标定

方法等带来的各种变形算法

 介绍几个典型应用的例子

2

遗传算法

 遗传算法是智能优化方法中应用最为广泛也最

为成功的算法

 介绍遗传算法的产生发展与基本原理

 讨论遗传算法的基本构成和模板理论

 介绍由不同编码方式、选择压力的调整、不同标定

方法等带来的各种变形算法

 介绍几个典型应用的例子

3

概述

 遗传算法(Genetic Algorithms, 简称GA 或GAs)是由美国密

歇根大学的John H. Holland教授及其学生于20世纪60

年代末到70年代初提出的. 在1975年出版的 《自然与

人工系统的自适应性》(Adaptation in Natural and Artificial

Systems) 中, Holland 系统地阐述了遗传算法的基本理

论和方法, 提出了对遗传算法的理论发展极为重要的

模板理论(Schema Theory).

 后来De Jong和Goldberg等人做了大量的工作, 使遗传

算法更加完善.

4

概述

 近年来, 由于遗传箅法求解复杂优化问题的巨大潜力

及其在工业工程、人工智能、生物工程、自动控制等

各个领域的成功应用, 该算法得到了广泛的关注. 可以

说, 遗传算法是目前为止应用最为广泛和最为成功的

智能优化方法.

 生物在自然界中的生存繁衍, 显示了其对自然环境的

优异的自适应能力. 遗传算法所借鉴的生物学基础就

是生物的进化和遗传。

5

生物进化

 进化(Evolution): 生物在其延续生存的过程中, 逐渐适

应其生存环境, 使得其品质不断得到改良, 这种生命现

象称为进化.

 群体(Population): 生物的进化是以集团的形式共同进

行的, 这样的一个团体称为群体, 组成群体的单个生物

称为个体(Individual), 每个个体对其生存环境都有不同

的适应能力, 这种适应能力称为个体的适应度(Fitness).

6

生物进化

 按照达尔文的进化论, 那些具有较强适应环境变化能力

的生物个体具有更高的生存能力, 容易存话下来, 并有

较多的机会产生后代; 相反, 具有较低生存能力的个体

则被淘汰, 或者产生后代的机会越来越少, 直至消亡. 达

尔文把这一过程和现象叫做“自然选择, 适者生存”.

通过这种自然的选择, 物种将逐渐地向适应于生存环境

的方向进化, 从而产生优良的物种.

7

生物的遗传变异

 生物从其亲代继承特性或性状, 这种生命现象就

遗传算法是一种借鉴生物界自然选择和进化机制发展起来的高度并行、随机、自适应搜索算法。由于其具有健壮性,特别适合于处理传统搜索算法解决不好的复杂的和非线性问题。以遗传算法为核心的进化算法已与模糊系统理论、人工神经网络等一起成为计算智能研究中的热点,受到许多学科的共同关注。 本书全面系统地介绍了遗传算法的基本理论,重点介绍了遗传算法的经典应用和国内外的新发展。全书共分11章。第1章概述了遗传算法的产生与发展、基本思想、基本操作以及应用情况;第2章介绍了基本遗传算法;第3章论述了遗传算法的数学基础;第4章分析了遗传算法的多种改进方法;第5章初步介绍了进货计算理论体系;第6章介绍了遗传算法应用于数值优化问题;第7章介绍了遗传算法应用于组合优化问题;第8章介绍了遗传算法应用于机器学习;第9章讨论了遗传算法在智能控制中的应用;第10章讨论了遗传算法与人工生命研究的相关问题;第11章介绍了遗传算法在图像处理、模式识别中的应用。 本书可供从事计算智能、自动控制、图像处理与模式识别、系统工程、优化设计、高性能计算等专业领域的研究人员阅读,也可供研究生及高年级大学生参考。 个人收集电子书,仅用学习使用,不可用于商业用途,如有版权问题,请联系删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值