linux优质博客,Linux技术博客

本文详细阐述了IC卡交易中涉及的四个账户(X1-X4)及银行系统间的交互过程,重点讲解了消费、圈存和圈提的交易逻辑,以及银联规则如何影响账务同步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于一笔IC卡交易,总共设计到两个系统四个账户数据,两个系统分别是

IC卡系统

银行内部核心账务系统

而对应有三个账户数据,为了后续方便起见起个别名

IC卡本身芯片内账户数据 X1

IC卡系统内账户数据 X2

银行网点对应账户数据 X3

银行个人对应账户数据X4

这样区分账户的意义在于,对于用户来说,我的消费本身是实时的,扣了钱我就必须得到我想要的商品,这里扣的钱是芯片对应的金额X1。但对于商户来说这个钱并不一定是实时到账的,其原因是所有的IC消费都必须通过银联(有那么多家银行呢),再由银联通知各大银行进行账务操作,改变X2、X3、X4对应数据,这个流程根据银联的规则最长为30天。

这也就导致了X1、X2、X3、X4的数据在一笔交易最终完成之前不是相等的,在处理账务时也就有了区别。其中我们认为X1出错的概率很小很小,因为操作都是以X1作起点。而对于IC卡交易来说分为圈存、圈提、消费三种。

圈存就是指往IC卡系统里存钱。这种交易一般来说是从柜面或是机具(ITM、ATM等),我们统称银行的金融终端上进行,当然近些年又多了像手机银行或是微信银行等渠道,但因为圈存都是银行内部的系统进行操作因此速度都比较快,且不容易出错,即使是哪一步出了问题也好查。

圈提就是指往IC卡系统里取钱。我们可以把IC卡设想成一张公交卡,那我们没有说今天往公交卡里存个100,明天取个20后天取个30的对吧。因此IC卡的圈提一般来说都是销户圈提,你可以消费,但是想取钱那就得先销户(这个销户的意思并不是说把账户从系统里删除,而是指的将卡上的芯片)。这中间就涉及到许多问题,我们之后一一道来。

消费么就顾名思义,我们在一些消费终端上进行交易都可以称为消费,但需要注意的是虽然消费终端是联网的,但它并不是和银行、甚至到每家网点直连,而是与银联直连(这样设计的理由就不多说了)。这就涉及到先前说的T+30的问题,X1在消费时肯定是先扣钱了,但X2、X3的钱并不会直接扣除,而是等银联给到银行某一批报文,银行再内部对这批报文进行处理。

那么对于圈存来说,金额的变动依次是X1->X2->X4->X3。

对于圈提提来说,又分为可读卡圈提和不可读卡圈提。可读卡圈提指的是能直接读到芯片中的金额X1,对于这种情况金额的变动依次是X1->X4->X3->X2。而不可读卡圈提指的是对于芯片中的金额不可读的情况下,金额的圈提就要以X2为依据,但是因为前面说过的T+30原因,金额变动的顺序就变为 销户后->X2->X4->X3。

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值