2011 年 3 月第 25 卷 第 1 期 阴 山 学 刊 YINSHAN ACADEMIC JOURNAL Mar. 2011 Vo1. 25 No. 1 基于 MATLAB 的随机线性微分方程的求解* 云 文 在 ( 包头师范学院 数学科学学院,内蒙古 包头 014030) 摘 要: 给出连续线性系统离散化形式的解的算法及 MATLAB 实现,举例进行仿真,并得出随机输入系统的响应曲线。 关键词: 随机线性连续状态方程; 离散化; MATLAB; 仿真 中图分类号: O175 文献标识码: A 文章编号:1004 -1869( 2011) 01 -0011 -03 1 假设随机线性连续状态方程模型为 x( t) = Ax( t) + B[d( t) + γ( t) ],y( t) = Cx( t) 式中 A,B,C 为兼容矩阵,d( t) 为确定性输入向量,γ ( t) 为 Gauss 白噪声向量,满足 E[γ( t) ]=0,E[γ( t) γT( t) ]= Vσδ( t - - ι ) , 定义一个变量 γc( t) = Bγ( t) ,则可以证明 γc( t) 亦为 Gauss 白噪声向量,且满足 E[γc( t) ]=0,E[γc( t) γc T( t) ]= Vcδ( t - - ι ) , 其中 Vc = BVcBT 是一个协方差矩阵。 此时状态方程模型可改写为: x( t) = Ax( t) + Bd( t) + γc( t) ,y( t) = Cx( t) 2 连续状态方程的离散化 假设,t 0 = kΔt,t = ( k + 1) Δt 其中 Δt 为计算步长,并假设在一个计算步长之内确定性输入信号 d ( t) 为一个常数,即,如 Δt≤t≤( k + t) Δt 时有 d( t) = d( kΔt) ,则连续状态方程的离散形式可写成: x[( k + 1) Δt] = Fx ( kΔt) + Gd ( kΔt) + γd ( kΔt) ,y( kΔt) = Cx( kΔt) 式中 F = eAΔt,G = ∫ Δt 0 eA( Δt - - ι ) Bd - ι , 且 γd( kΔt) = ∫ ( k +1) Δt kΔt eA[( k +1) Δt - - ι]γc( t) d - ι = ∫ Δt 0 eAtγc[( k +1) Δt - - ι ]d - ι 可见矩阵 F,G 和确定性系统的离散化形式是一样的。但可以看出,若系统含有随机输入时,系统的离散化形式与传统形式是不同的。 可以证明 γd( t) 也是 Gauss 白噪声向量,且满足 E[γd( t) ( kΔt) ]=0, E[γd( t) ( kΔt) γT d( t) ( jΔt) ]= Vδkj, 式中 V = ∫ Δt 0 eAtVceATtdt。 3 离散化状态方程形式的解 利用 Taylor 幂级数展式得: V = ∫ Δt 0 ∑ ∞ k =0 Rk( 0) k! tkdt∑ ∞ k =0 Vk 其中 RK( 0) 与 Vk 可以由下式递推求出: Rk( 0) = ARk -1( 0) + Rk -1( 0) AT Vk = Δt k +1 ( AVk -1 + Vk -1AT{ ) 递推初值为 R0( 0) = R( 0) = Vc,V0 = VcΔt。 由奇异值分 解理论,可以将矩阵 V 写成 V = UΓUT,其中 U 为正交矩阵,Γ 为含有非零对角元素的对角矩阵,这样就可以得出 Cholesky 分 解 V = DDT
matlab随机线性微分方程,基于MATLAB的随机线性微分方程的求解
最新推荐文章于 2023-12-24 21:23:56 发布