实验18 非周期信号的频谱 实验目的 学习Matlab的符号运算功能中计算傅里叶变换和反变换的方法。 掌握用Matlab绘制非周期信号频谱的数值方法和符号方法。 通过对非周期信号频谱的绘制。加深对傅里叶变换性质的理解。 实验原理与说明 傅里叶变换和反变换的符号运算 实验原理与说明 实验原理与说明 傅里叶变换的数值计算 实验原理与说明 用数值方法画出三角波的频谱。 计算示例1 计算示例1 >> F=fourier(ft) F = i*(2*i*exp(2*i*w)*(pi*Dirac(w)-i/w)+exp(2*i*w)*(pi*Dirac(1,w)+i/w^2))+2*exp(2*i*w)*(pi*Dirac(w)-i/w)-i*(i*exp(i*w)*(pi*Dirac(w)-i/w)+exp(i*w)*(pi*Dirac(1,w)+i/w^2))-exp(i*w)*(pi*Dirac(w)-i/w)-i*(-i*exp(-i*w)*(pi*Dirac(w)-i/w)+exp(-i*w)*(pi*Dirac(1,w)+i/w^2))+exp(-i*w)*(pi*Dirac(w)-i/w)+i*(-2*i*exp(-2*i*w)*(pi*Dirac(w)-i/w)+exp(-2*i*w)*(pi*Dirac(1,w)+i/w^2))-2*exp(-2*i*w)*(pi*Dirac(w)-i/w) >> F1=simple(F) F1 = -2*(cos(2*w)-cos(w))/w^2 计算示例3 计算示例4 实验内容 考虑非周期连续时间信号如门函数或单边指数,将其左移和右移后观察其频谱的变化。验证傅里叶变换的时移性质。 考虑非周期连续时间信号如门函数或三角波,将其用余弦调制。观察其频谱的变化。验证傅里叶变换的调制性质。 考虑非周期连续时间信号如门函数或单边指数,将其进行尺度变换后观察其频谱的变化。验证傅里叶变换的尺度变换性质。 实验内容 求下列信号的傅里叶变换。画出和的幅度谱和相位谱,并进行比较。(令A=2,a=3) 实验内容 实验内容 实验步骤与方法 由于经常在画如图18-2所示的时间波形、幅度频谱、相位频谱,可将exp18_2.m程序改编成函数。这样只要在画频谱图时调用该函数就可以了。 仿照例3的方法做实验1、2、3的内容。加深对傅里叶变换性质的理解。 仿照例4的方法,完成实验内容4的编程。上机调试程序,根据题目要求对幅度谱和相位谱加以比较。 仿照例1、2的符号计算方法,完成实验内容5、6的计算。并与理论计算进行比较。 实验报告要求 根据实验内容编写出的程序。以及绘出的各种波形图。对各种频谱图加以比较说明。 上机调试程序的方法。 根据实验归纳、总结出用Matlab绘制信号频谱图的方法。 心得体会及其他。 * *MATLAB的符号运算工具箱中,专门提供了傅里叶变换和反变换的函数。 正变换的调用格式为F=fourier(f)式中,f为时间函数的符号表达式,F为傅里叶变换式,也是符号表达式。 反变换的调用格式为f=ifourier(F)式中,F为傅里叶变换式的符号表达式,f为时间函数,是符号形式。为了改善公式的可读性,MATLAB提供了pretty函数,调用格式为Pretty(f)式中,f为符号表达式。 如已知,求其频谱。 >> syms t w >> f=sym('exp(-2*t)*Heaviside(t)') f = exp(-2*t)*Heaviside(t) >> F=fourier(f) F = 1/(2+i*w) >> pretty(F)1-------2 + i w >> f1=ifourier(F,t) f1 = exp(-2*t)*Heaviside(t)MATLAB提供了很多数值计算的工具,可以用来进行信号的频谱分析。quadl(即QUADL)是MATLAB中计算数值积分的函数。利用quadl函数可以计算非周期性连续信号的频谱。调用形式为y=quadl(fun,a,b)y=quadl(fun,a,b,TOL,TRACE,p1,p2,?) 其中,fun指被积函数,可以用下列两种等效的形式来指定,第一种形式为F = inline('1./(x.^3-2*x-5)');Q = quadl(F,0,2); 第二种形式为Q = quadl(@myfun,0,2); 这里的 myfun.m 是一个内容如下的 M 文件function y = myfun(x)y = 1./(x.^3-2*x-5); (a) (b) 图18-1 求如图18-2所示信号的傅里叶变换。 图18-2 解: 用Matlab的符号运算功能可以很方便地求出傅里叶变换,本题计算如下:梯形波可表示为 >> ft=sym(
matlab符号计算相位,matlab符号运算傅里叶变换sykj18.ppt
最新推荐文章于 2022-04-27 23:00:00 发布