摘要:
人机交互活动在人类日常生活中变得愈加重要,手势识别一直是人机交互领域的重要研究领域,也是近年来的研究热点。随着人机交互和计算机视觉的发展,手势识别的研究也取得了较大发展。计算机视觉的发展,使得问题转化为对图像处理的研究,通过图像处理技术来研究手势识别算法。手势识别技术使用手势代替各种按键,用户可以直接地使用简单的手势来控制电子设备。旨将手势作为一种更自然、更加快速高效的交互手段。图像采集设备所采集到的图像信息,由于包含手势以外的环境信息,手势识别算法需将手势信息从图像中分割出来,在基于计算机对图像中的手势进行识别时,手部区域的检测和分割是准确识别的前提。进而将提取到的手势图像特征输入到网络中训练和识别,计算该手势和所有类别的匹配度,取最大值所对应的手势类别为识别结果,得到手势识别结果后将其表示的含义反馈给系统,并使之作出响应,进而完成整个手势识别过程。因此,本文旨在研究如何设计更加有效的手势分割和识别算法。自生成神经网络是一类自组织神经网络,具有学习自主性高、无需人为调整网络结构与参数的优势。针对手势交互的特点,利用自生成神经网络的优势,本文采用智能寻优算法对自生成神经网络进行优化,将其应用到手势交互中的手势分割中,并通过生成分类神经树实现手势类型的识别。本文围绕自生成神经网络展开,使用粒子群优化算法对其优化,生成基于粒子群优化算法和自生成神经网络的网络结构。该方法主要分为手势分割、特征提取和手势识别三部分,首先采用基于粒子群优化后的自生成神经网络算法检测并分割图像中的手势部分区域;然后提取手势的特征并构造特征向量,在Hu矩和多层次特征提取的基础上,使用深度学习中的卷积神经网络挖掘隐含信息,将所提取的特征使用嵌入式特征选择来选择特征;最后将选择出来的特征放入网络中训练和分类、识别手势类型。在论文中,为了得到好的分割效果,还使用了基于模拟退火算法的稀疏表示方法对图像进行快速去噪。实验结果表明,本文方法能达到较高的识别精度,是一个可行高效的手势检测与识别方法。
展开