matlab modulant,利用Matlab以蚁群算法(Ant Colony Algorithm)求解不闭合的旅行商问题(Travelling Salesman Problem, TSP)并进行可...

旅行商问题是一种十分重要的问题,在生产生活中都有重要应用。其变式也很多。这里讨论一下不闭合的旅行商问题的Matlab表示,并用相应函数来表示其产生的路径。

不闭合的旅行商问题,也就是起点和终点不需要重合,寻找连接所有点的最短路径的问题。

做理论研究时可能就要另起一个话题了,但是对于编程求解来说,因为实现环路是把原始的城市编号集(例如50个城市,那么现在编号集就有50个数据)直接在尾部添加编号集的第一个数据,这样就成为51个数据了,所以只要去掉这一步,就成为不闭合的TSP了。这是对原理的解释,不同人写的程序的具体实现不同。有的是采用编号集增加数据,有的是采用计算路径长度时算上首尾的距离等等。

以下是对百度知道里面找到的已有算法(点击打开链接)进行的整理和补充优化(原算法用于求解闭合的,这里修改为不闭合的):

数据样本:

C=[1304 2312

3639 1315

4177 2244

3712 1399

3488 1535

3326 1556

3238 1229

4196 1004

4312 790

4386 570

3007 1970

2562 1756

2788 1491

2381 1676

1332 695

3715 1678

3918 2179

4061 2370

3780 2212

3676 2578

4029 2838

4263 2931

3429 1908

3507 2367

3394 2643

3439 3201

2935 3240

3140 3550

2545 2357

2778 2826

2370 2975

];

处理:

结果:

0818b9ca8b590ca3270a3433284dd417.png

代码解释:

函数ACATSP.m的第74行注释掉了,这样在计算路径长度时就不计首与尾的连接了,也就是成为了不闭合的TSP问题。

函数DrawRoute.m的第8和9行注释掉了,所以作出的图也就是不闭合的了。

这两个关键点保证计算和图示都是不闭合的TSP问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值