python3.6 php7,Python 3.7.0

Python 3.7 版本带来了众多新特性和优化,包括新的线程本地存储 C API、确定性的 pyc 文件、内置的 breakpoint() 函数、数据类的支持、类型模块的核心支持等。此外,该版本还改进了 DeprecationWarning 的处理方式,并引入了 Context Variables。字典对象的插入顺序保持特性现已成为 Python 语言规范的一部分。

Release Date: 2018-06-27

Python 3.7.0 is the newest major release of the Python language, and it contains many new features and optimizations.

Among the major new features in Python 3.7 are:

PEP 539, new C API for thread-local storage

PEP 545, Python documentation translations

New documentation translations: Japanese, French, and Korean.

PEP 552, Deterministic pyc files

PEP 553, Built-in breakpoint()

PEP 557, Data Classes

PEP 560, Core support for typing module and generic types

PEP 562, Customization of access to module attributes

PEP 563, Postponed evaluation of annotations

PEP 564, Time functions with nanosecond resolution

PEP 565, Improved DeprecationWarning handling

PEP 567, Context Variables

Avoiding the use of ASCII as a default text encoding (PEP 538, legacy C locale coercion and PEP 540, forced UTF-8 runtime mode)

The insertion-order preservation nature of dict objects is now an official part of the Python language spec.

Notable performance improvements in many areas.

Please see What ’ s New In Python 3.7 for more information.

内容概要:本文详细介绍了一个基于Java后端与Vue前端的可解释性黑盒模型解释与可视化系统的设计与实现。系统旨在解决人工智能模型“黑箱”问题,通过集成LIME、SHAP、特征重要性评估等主流可解释性算法,实现对复杂模型决策过程的透明化分析。项目采用Spring Boot构建后端服务,提供用户认证、数据与模型管理、异步任务调度、解释算法调用及结果存储等功能;前端使用Vue配合Element UI和ECharts实现交互式可视化展示,支持特征贡献条形图、热力图、决策路径等多维度呈现。系统具备高可用、可扩展、安全合规等特点,适用于金融、医疗、工业、司法等多个领域。文档涵盖项目背景、架构设计、核心代码实现、数据库设计、API接口规范及部署方案,并提供了完整的前后端代码示例和模块封装。; 适合人群:具备Java和Vue开发基础的中初级研发人员、算法工程师、数据分析师以及从事AI系统开发与应用的相关技术人员。; 使用场景及目标:①构建面向多行业的AI模型可解释性服务平台,提升模型透明度与决策信任度;②实现黑盒模型的特征贡献分析与可视化展示,支持模型优化与合规审查;③学习前后端分离架构下复杂系统的设计与开发流程,掌握异步任务处理、RESTful API设计、数据可视化等关键技术。; 阅读建议:建议读者结合文档中的代码示例与系统架构图,逐步理解各模块功能与交互逻辑。可优先运行提供的完整代码示例,熟悉系统整体流程后再深入研读核心算法实现与前后端集成细节。在学习过程中,应重点关注异步任务调度、解释算法适配、前后端数据交互与安全控制等关键设计,以便在实际项目中进行复用与扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值