我正在努力教自己如何有限元方法.
我在Matlab中编程以对单个8节点立方体元素执行有限元分析.我已经定义了xi,eta,zeta局部轴(我们现在可以将其视为x,y,z),因此我得到以下形状函数:
%%shape functions
zeta = 0:.01:1;
eta = 0:.01:1;
xi = 0:.01:1;
N1 = 1/8*(1-xi).*(1-eta).*(1-zeta);
N2 = 1/8*(1+xi).*(1-eta).*(1-zeta);
N3 = 1/8*(1+xi).*(1+eta).*(1-zeta);
N4 = 1/8*(1-xi).*(1+eta).*(1-zeta);
N5 = 1/8*(1-xi).*(1-eta).*(1+zeta);
N6 = 1/8*(1+xi).*(1-eta).*(1+zeta);
N7 = 1/8*(1+xi).*(1+eta).*(1+zeta);
N8 = 1/8*(1-xi).*(1+eta).*(1+zeta);
根据我正在阅读的文字,[N]矩阵将按此布置:
%N Matrix
N= [N1 0 0 N2 0 0 N3 0 0 N4 0 0 N5 0 0 N6 0 0 N7 0 0 N8 0 0;
0 N1 0 0 N2 0 0 N3 0 0 N4 0 0 N5 0 0 N6 0 0 N7 0 0 N8 0;
0 0 N1 0 0 N2 0 0 N3 0 0 N4 0 0 N5 0 0 N6 0 0 N7 0 0 N8];
要找到[B]矩阵,我必须使用以下[D]矩阵:
%%Del Matrix for node i
%[ d/dx 0 0
% 0 d/dy 0
% 0 0 d/dz . . .
% d/dy d/dx 0
% 0 d/dz d/dy
% d/dz 0 d/dx ]
这是一个继续[N]的运算符. (B = DN)
稍后,正如文本所示,我将进行计算,涉及该[B]矩阵的积分超过该元素的体积.
所以,我的问题是,如何将这些多项式形状函数存储在矩阵中,以差分对它们进行操作,然后以数字方式对它们进行积分.我现在可以告诉我这个设置的方式,它不会工作,因为我已经将函数定义为区间[0,1]上的向量,然后将这些向量存储在[N]矩阵中.然后使用diff()函数进行适当区分以找到[B]矩阵.
但由于[B]的矩阵元素现在是区间[0,1]的向量,我认为这会引起问题.你们将如何进行我在上面发布的教科书中描述的这些计算?