点击上方蓝色字体“高中数学王晖”关注王晖老师,免费获取各种知识干货和学习经验~~~您的点赞转发是对老师的最大鼓舞~~~
距高考还有168天
从展开图看几何体表面积


斜棱柱的侧面展开,整体上看,就不是那样规则的平面图形了。
就象上面这个斜六棱柱,展开后给人的感觉,歪七扭八的,挺不规则。
因此,它的侧面积,也只能逐个计算,毫无章法可言。
不过,这还是幸亏各个侧面还是平行四边形。

正棱锥的侧面展开确实也还算是规则的,毕竟各个三角形的底和高都是一样的,甚至给人一种扇形的感觉。
所以,它的表面积也从来没有愁煞人的:
但是,一般棱锥的展开,是不是就会让人纠心了呢?
确实,展开后各三角形的排列毫无规则,需要借助解三角形的知识点求解面积。

正方体的展开,确实就让人心旷神怡了。
不仅因为各面都是正方形,
更因为,正方体的展开多达十一种姿势呢。还一度成为一个很火的网红话题。
正方体的表面积则是非常简单的:
正方形表面积=底面面积x6
正方体十一种展开图

圆锥,一定是大家所熟知的一个旋转体,
而且也知道,它的侧面,展开后是一个扇形。
涉及到相关的计算,其实也很简单。
圆锥表面积=底面面积+侧面积
扇形弧长=圆锥底面圆周长
扇形半径=圆锥母线长
扇形面积=弧长x半径÷2
因为,有了这些,就完全可以肆无忌惮了。
圆锥展开
圆锥

圆柱是由矩形经过旋转而形成的。
它的侧面展开更是我们所喜欢的长方形(矩形)。
当然,要想计算好,也还是要一定的准备知识。
圆柱表面积=两底面面积+侧面积
矩形长=圆柱底面圆周长
矩形宽=圆柱的高(母线长)
圆柱展开
圆柱

球是由曲线半圆或圆旋转线而成的,
所以,它的展开其实并不容易。
甚至可以说,球是不能完全展开成平面图形的。
这就象一个足球,我们就很难将它剪开、无皱褶的平摊在桌面上的。
当然,如果真的想要将其展开的话,也是有很巧妙的方法。
例如采用下面的这样的手段,就可以达到很完美。
足球的展开
不过对于现在,关于球面积的计算,只需记住它的公式就可以了:
球的表面积=4πr2
几何体的体积计算

其实,长方体的体积在小学课本以及提及到了:
V=底面积×高
不过在长方体中常见的计算,一定还有体对角线:
BD2=a2+b2+c2
意思就是,体对角线的平方,等于各边的平方和。

长方体是一个极特别的棱柱。
其实,和长方体一样,无论直棱柱或斜棱柱,它的体积也都是:
V=底面积×高
只是直棱柱的高即为侧棱长,而斜棱柱的高,需要构造三角形去计算。

都知道棱锥的体积:
V=底面积×高÷3
其实就是说,
棱锥的体积是同底等高棱柱体积的三分之一。
可是,你真的确定,这个“三分之一”的出处?见下面用动图展示:

其实,圆柱、圆锥的体积和棱柱、棱锥相同:
V圆柱=底面积×高
V圆锥=底面积×高÷3
而且这样,记忆起来会更方便和简洁。

球的体积,说难也易,其实只要做些技术处理。
就象图示,切割求和而得之。
但毕竟,需要借用到极限和数列的知识,所以先还是老老实实加强记忆:
V=4/3*πR3

往期优质数学干货链接:
【大放异彩】空间向量在立体几何中的运用到底有多广???答曰:每一种类型题都能解!!!
【标新立异】借助坐标伸缩变换解决椭圆的七大问题------“巧妙”中带着一丝“妖娆”!!!
【琳琅满目】立体几何平行证明的四大必杀绝技------赞!很赞!!非常赞!!!
【深藏不露】借助动图判断二面角的大小(锐角or钝角)------超级形象,速速收藏!!!
【踔绝之能】巧用“等和线”解决平面向量问题,怎一个“妙”字了得!!!
【博学多才】筷子夹汤圆,夹出一个美丽的"蒙日圆",真是太神奇了!!!