matlab 图形绘制,MATLAB的图形绘制

MATLAB除了强大的数值分析功能外,还具有方便的绘图功能。利用MATLAB丰富的二维、三维图形函数和多种修饰方法,只要指定绘图方式并提供绘图数据,就可以绘制出理想的图形。由于MATLAB的图形系统是建立在诸如线、面等图形对象的集合基础之上,因此用户可以对任何一个图形元素进行单独的修改,而不影响图形的其他部分。

二维图形的绘制

基本绘图命名

MATLAB中最常用的绘图函数为plot(),它是用于绘制二维曲线的,根据函数输入参数不同,常用的几种调用格式如下表所示。其中,‘option’用来设置曲线属性的选项,其内容主要包括诸如颜色、线型、标记类型等曲线属性。‘option’选项并不是必需项,若缺少该项,MATLAB将按系统默认格式统一安排各条曲线的属性值。

eedb2aee5772f3fcb73684edf126afba.png

MATLAB提供了三种’option’选项以供修改:Line style线类型,Marker symbol标记符号,Color颜色。下表列出了’option’选项的属性。

0b3a0eedd7cdf6647d5fdfea77cc749e.png

有时会对图形的绘制进行一些修饰,MATLAB提供了多种图形函数,用于图形的修饰。常用的图形修饰函数名称及其功能说明如下表所示。

e4f7c98325030ce1d5ef7a01c1beae00.png

MATLAB提供了一系列专门的图形窗口控制函数,通过这些函数,可以创建或者关闭图形窗口,可以同时打开几个窗口,也可以在一个窗口内绘制若干子图。这些函数及其功能说明如下表所示。

9dc9fb7acf8bc65f565c6487fe981ee3.png

实例

用三种不同的线型、标记符号和颜色分别绘制正弦、余弦、正切曲线曲线。

figure

x = 0: pi/20 : 2*pi; % x = a : b : c 指从a开始,步长为b,终值为c的数组。

y1 = sin(x);

y2 = cos(x);

y3 = tan(x);

plot(x,y1,‘-rs‘, x,y2,‘-.kv‘, x,y3,‘:bd‘)

axis([0,2*pi,-1,1])

xlabel(‘弧度值‘)

ylabel(‘函数值‘)

title(‘绘制曲线‘);

legend(‘y1‘,‘y2‘,‘y3‘);

4e4b5eeef60fb6f667315c30b7456f3e.png

特殊二维曲线绘制

除了标准的二维曲线绘制之外,MATLAB还提供了多种具有特殊意义的图形绘制函数,其常用调用格式如下表所示。其中,参数x和y分别表示x轴、y轴绘图数据。

23ffbf9768bd028c45470a591cb487f9.png

实例

已知y=ex,分别用上表中的六种绘图方式显示x和y的关系。

x = -4 : 0.5 : 4 % 指从a开始,步长为b,终值为c的数组。

y = exp(x)

figure(1)

bar(x,y)

title(‘bar(x,y)‘)

figure(2)

stem(x,y)

title(‘stem(x,y)‘)

figure(3)

stairs(x,y)

title(‘staiars‘(x,y)‘)

figure(4)

polar(x,y)

title(‘polar(x,y)‘)

figure(5)

loglog(x,y)

title(‘loglog(x,y)‘)

figrue(6)

area(x,y)

title(‘area‘(x,y)‘)

76b8fae247efbd9fba282958a1fee2bb.png

6d7b623af039adbb146615b0d8406785.png

08251a6a6ee08ecf71aab55507fe5994.png

5e88014b94ff42616c08097450920d9d.png

80b18ed1652bbec54c50568835eaa205.png

89c48d65e4bcbdc39bc4f3a1e7001834.png

df354c749d6b16b474d4a0c9ffb3a731.png

三维图形的绘制

三维曲线的绘制

三维曲线的绘制与二维曲线的绘制方法基本一致。常用的调用格式如下:

808367945014c850fa302ea33c37a081.png

plot3(x,y,z,‘option‘)

plot3(x1,y1,z1,‘option1‘, x2,y2,z2,‘option2‘, ....)

其中,x、y、z所给出的数据分别为x、y、z坐标值,‘option’为选项参数,plot3命令中参数的含义与plot命令类似,只是多了一个z方向的参数。

实例

绘制三维火柴杆型螺旋线。

z = 0 : pi/20 : 2*pi;

x = sin(z);

y = cos(z)

stem3(x ,y , z)

xlabel(‘sin(z)‘)

ylabel(‘cos(z)‘)

zlabel(‘z‘)

grid on

c59af4f970d8ad6390ff1333aa3d8d83.png

三维曲面的绘制

三维曲面方程存在两个自变量x、y和一个因变量z。因此,绘制三维曲面图形必须先在xy平面上建立网络坐标,每一个网络坐标点,和它对应的z坐标所确定的一组三维数据就定义了曲面上的一个点。三维曲面绘制中,常用的3个函数及其功能说明如下表所示。

324417f5bf7b453268641aec5de5ae44.png

实例

用mesh和surf两个函数分别绘制z=-x2-y2,x的范围限定在[-2,2], y的范围限定在[-2,2]。

x = -2 : 0.1 : 2;

y = -2 : 0.1 : 2;

[X, Y] = meshgrid(x,y);

Z = -(X.^2 + Y.^2);

figure(1)

mesh(X, Y, Z) % 网格曲面

figure(2)

surf(X, Y, Z) % 阴影曲面

03ca71cb1d22e0592ed08fff52f9a329.png

原文:https://www.cnblogs.com/sinlearn/p/12910182.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值