MATLAB在金融应用的基础知识 极大似然估计
金融计算与编程 上海财经大学金融学院 曹志广
极大似然估计极大似然估计
极大似然估计极大似然估计
极大似然估计方法在金融领域中的应用十分广泛。该方法利用已知的概率密
度函数形式,构造对数似然函数,然后最大化该似然函数从而求得概率密度函数
中所含的参数估计量。比如:对 GARCH(1,1)模型中的参数估计中,如果均值方
程中的扰动项服从正态分布,则我们可以利用正态分布的概率密度函数对所含参
数进行估计。
1.极大似然估计基本原理
(1)参数估计
下面以线性回归中系数的极大似然估计为例来说明极大似然估计基本原理。
考虑线性回归:Y = Xβ + ε ,ε = Y − Xβ ~ N (0,σ 2 )
则对于 X 和Y 的每一对观测值(X ,Y ) ,这里,X 为行向量,其概率密度
i i i
数形式如下:
1 1 Y − X β 2
f X Y i i
( i , i ) = exp(− ( ) )
2πσ 2 2 σ
给定N 对相互独立的观测值(X ,Y ) ,i = 1,2,..., N ,样本中所有观测值的总体概
i i
率密度函数L(β ,σ ) 为单个观测值概率密度函数的乘积,即:
N 1 1 Y − X β 2
L(β ,σ ) = ∏ 2 exp(− 2 ( i σ i ) ) (1)
i=1 2πσ
极大似然估计要给出参数(β ,σ ) 的估计量使得 (1)式最大。由于 (1)式为乘积
的形式,直接对最大化 (1)式求解最优解,比较麻烦。因此,采用似然函数的
对数形式:
N 1 1 2
LnL(β ,σ ) = ∑[Ln( ) − (Y − X β ) ]
2 i i
i=1 2πσ 2 2σ
然后求解以下最优化问题:
N 1 1 2
max LnL(β ,σ ) = ∑[Ln( ) − (Y − X β ) ] (2)
2 i i
(β ,σ ) i=1 2πσ 2 2σ
最后得到的参数(β ,σ ) 的估计量与普通最小二乘法得到的结果一样。因此,当普
通最小二乘法回归方程中的残差服从正态分布时,普通最小二乘估计与极大似然
估计的结果是一样的。
更一般地,我们用θ 表示需要估计的参数向量,相应地对数似然函数为:LnL(θ ) 。
(2)参数估计的标准误差
ˆ
求解优化问题 (2),虽然给出了参数θ 的估计量θ ,但并没有给出估计的标
1
金融计算与编程 上海财经大学金融学院 曹志广
ˆ
准误差。如果对数似然函数L