2021年新高考八省联考成绩查询江苏省,江苏2021八省联考分数线、位次汇总-附江苏新高考改革方案解读...

e36869a4b6736391401c59c5d9cef476.png

选择科目

测一测我能上哪些大学

cb2fcb36a0bdab80d188e3a8b34e01d3.png

选择科目

领取你的专属报告

>

选择省份

关闭

请选择科目

确定

v>

3月8日晚,江苏省2021年八省联考新高考适应性考试成绩公布,对于首年实施新高考改革且分值由480调整为750的江苏考生来说,此次成绩对于考生择校及志愿填报都极具参考意义,那么这次大家考的如何呢?小编收集整理江苏省部分考生成绩、位次如下,仅供参考,具体以官方发布为准。

江苏近3年投档分及位次参考

1、江苏理工一本2018~2020投档分、位次

江苏省2021年实施新高考改革,高考总分由原来的480分调整为750分,因为总分值的差异,使得往年的录取分数线及投档分数线参考价值不大。基于2021考生在志愿填报时,建议多关注、研究近3-5年目标高校的录取位次。

2020年江苏考生本科上线人数如下,考生家长可做参考:高考人数34.5万,本科上线人数201329人,理科本科上线150784人,文科本科上线50545人。

2、江苏文史一本2018~2020投档分、位次对照表

3、新高考志愿填报

江苏省2021年本科段志愿填报院校+专业组志愿填报模式。这种填报模式中,一个院校专业组为一个单独的志愿单位,一所高校可设置多个“院校专业组”,符合填报资格的考生可以填报某所高校的1个院校专业组,也可以连续或者间隔填报同一所高校的不同“院校专业组”。

新高考改革前后,志愿填报政策变化:

1、高校招生计划设置

改革前,按文史、理工类安排招生计划。

改革后,招生类别按照历史科目组合、物理科目组合分列编制。

2、各批次划线方式

改革前,按文史、理工类分开划线。

改革后,各类录取控制分数线按历史科目组合、物理科目组合分开划线。

3、录取批次

本次改革将原第一批本科、第二批本科两个招生录取批次合并为“本科批次”,普通类录取批次主要分为本科提前批、本科批和专科提前批、专科批四个录取批次,实行分段填报志愿,分段录取。

根据江苏省考试院的安排,16-18号将进行模拟志愿的预填报,3月20-24日进行模拟志愿正式填报。考生、家长要熟悉本次填报的要求,比如院校专业组的代码、院校专业代码,最终填报的时候都是填写代码,系统根据考生填报的代码来识别院校名称和专业名称,这个过程建议各位家长都要尝试走一遍流程,为最终高考结束后的时间做准备。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
你好,根据你的要求,我可以回答这个问题。以下是一个基于成绩高考选科分析的 Python 代码: ```python # 导入必要的库 import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression # 读取数据 data = pd.read_csv('成绩数据.csv') # 计算不同科目之间的成绩相关性 corr_matrix = data.corr() # 定义一个函数,用于预测某个科目的成绩 def predict_score(subject, scores): # 去掉当前科目的成绩 X = scores.drop(subject, axis=1) # 获取当前科目的成绩 y = scores[subject] # 训练线性回归模型 model = LinearRegression() model.fit(X, y) # 预测当前科目的成绩 score_pred = model.predict(X) return score_pred # 预测数学成绩 math_scores = data[['语文', '英语', '物理', '化学']] math_pred = predict_score('数学', math_scores) # 预测英语成绩 english_scores = data[['语文', '数学', '物理', '化学']] english_pred = predict_score('英语', english_scores) # 预测物理成绩 physics_scores = data[['语文', '数学', '英语', '化学']] physics_pred = predict_score('物理', physics_scores) # 预测化学成绩 chemistry_scores = data[['语文', '数学', '英语', '物理']] chemistry_pred = predict_score('化学', chemistry_scores) # 将预测结果添加到原始数据中 data['数学预测'] = math_pred data['英语预测'] = english_pred data['物理预测'] = physics_pred data['化学预测'] = chemistry_pred # 输出预测结果 print(data) ``` 该代码可以读取成绩数据,计算不同科目之间的成绩相关性,并预测每个科目的成绩。预测结果将添加到原始数据中,并输出到控制台。希望这个代码能够帮助你进行高考选科分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值