matlab fft 虚部,请教:偶函数的FFT 为什么还有虚部?

本文通过一个具体的MATLAB代码示例,探讨了当函数f(x,y)为圆对称时,使用二维快速傅里叶变换(FFT2)得到的结果仍存在虚部的现象。通过对称构造函数矩阵并应用FFT2,验证了即使输入为实数且圆对称,变换结果也可能包含虚部。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感谢 camouflage1  的耐心指导!

我刚才测试了一下,把原始f(x,y)人为设定为圆对称,但fft2仍然有相当的虚部。

以下是测试代码(在上次代码上加了构造矩阵的两行)。

-------------------------------------------------

nx = 4;

ny = 4;

arr = zeros(nx, ny);

orgM = [0.5, 0; 0, 2.0];

theta = pi/6.0;

rotM = [cos(theta), sin(theta); -sin(theta), cos(theta)];

xx = [-nx/2+0.5:nx/2-0.5]/nx * 2.0;

yy = [-ny/2+0.5:ny/2-0.5]/ny * 2.0;

zz = zeros(nx, ny);

for ix=1:nx

for iy=1:ny

zz(ix,iy) = exp(-[xx(ix), yy(iy)]*rotM*orgM*rotM'*[xx(ix), yy(iy)]');

end

end

zzLT = [zz(1,1:2); zz(2,1:2)];

zz = [zzLT, fliplr(zzLT); flipud(zzLT), fliplr(flipud(zzLT))];

disp(zz);

fftzz = fft2(zz);

disp(fftzz);

【 在 camouflage1 (camouflage) 的大作中提到: 】

: f(x,y)=f(-x,-y)是在过任意过原点直线且垂直于xy平面的平面上对称,是对称的平面曲线。

: 而f(x,y)不一定等于f(x,-y)

: 关于(0,0)对称需要f(x,y)=f(x,-y)=f(-x,y)=f(-x,-y),也就是圆对称,是对称的空间曲面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值