nowcoder猜想c语言筛子,nowcoder(牛客网)普及组模拟赛第一场 解题报告

蒟蒻我可能考了一场假试

这题没什么好说的,应该是只要会语言的就会做。

一个模拟题吧qwq,但是要注意取模的时候先加上n或者m再取模,要不然会错的。

#include

#include

#include

#include

#define MAXN 100010

using namespace std;

int n,m,t,q;

string s;

long long x[MAXN],y[MAXN],up,down,le,ri;

int main()

{

scanf("%d%d%d",&n,&m,&t);

cin>>s;

for(int i=0;i

{

if(s[i]=='U') up++;

else if(s[i]=='D') down++;

else if(s[i]=='L') le++;

else ri++;

}

scanf("%d",&q);

for(int i=1;i<=q;i++)

scanf("%lld%lld",&x[i],&y[i]);

up*=t;

down*=t;

le*=t;

ri*=t;

//printf("up=%d\ndown=%d\nleft=%d\nright=%d\n",up,down,le,ri);

for(int i=1;i<=q;i++)

{

long long ansx=x[i]+down-up;

while(ansx<=0) ansx+=n;

ansx=ansx%n;

if(ansx==0) ansx=n;

long long ansy=y[i]+ri-le;

while(ansy<=0) ansy+=m;

ansy=ansy%m;

if(ansy==0) ansy=m;

printf("%lld %lld\n",ansx,ansy);

}

return 0;

}

这个题是我考试的时候真的不会写qwq,猜测是组合计数问题??然而WA掉了,连样例都过不去qwq。 之后就开始想DP,但是看看数据范围,感觉会MLE??还是不会做啊qwq 不会写正解,就也不想写暴力部分分了qwq,最后弃掉了这个题。 考完试了之后看了dalao的代码恍然大悟,原来可以优化掉数组的第一维。。。。。。。 代码和注释如下:

#include

#include

#include

#include

#define mod 1000000007

using namespace std;

long long dp[10010];

//我们设dp[i][j]表示到第i个括号的时候有j个左括号没有匹配上的方案数,然后这里优化掉第一维,只保留第二维

char ch[10010];

int n;

int main()

{

scanf("%d",&n);

for(int i=0;i

cin>>ch[i];

dp[0]=1;

//DP初始化,都匹配上的话自然是存在一种情况的

for(int i=0;i

{

if(ch[i]=='(')

for(int j=n-i-1;j>=0;j--)

dp[j+1]=(dp[j]+dp[j+1])%mod;

//如果是左括号的话,自然是又多一种无法匹配到的状态,因为我们表示的是有j个左括号没有匹配到的方案数,所以+1并且后面的由前面转移过来

//而因为已经匹配到i了,所以.....j到n-i就可以了

else

for(int j=1;j<=n-i;j++)

dp[j-1]=(dp[j]+dp[j-1])%mod;

//原理同上

}

printf("%lld\n",(dp[0]-1)%mod);

//这里的减一是因为所有括号都被删除的情况不符合题目要求,所以方案数--

return 0;

}

官方题解是这样说的:qwq

直接枚举选择哪些字母配对很慢,可以考虑枚举联通块。当K>7时,显然所有串都能 相同了,因为只需要7条边就能让所有字母等价。

因此考虑枚举字母的联通块情况。而贪心地想,K肯定用完最好,因此联通块情况就只 有S(8,8-K)种情况,其中S为第二类斯特林数。

N=8时的斯特林数,0 1 127 966 1701 1050 266 28 1

实际可以跑一个爆搜看看要遍历多少个状态

枚举完联通块情况后,每个字符串中,每种字符替代为对应联通块编号,变成等价的 字符串。

然后计算哈希排序算等价对数。但这样可能超时。算一次哈希的复杂度为O(L)。可以 按字母分别维护每个字母出现位置的哈希值,重新算时复杂度是O(Σ),而不是O(L)的。

69fc129f4c55a83f6d68b263113ee4a4.png

9bb9f08854164754338cac182fbff30c.png qwq然鹅我并不会做这种解法的! 所以。。。我们可以尝试。。。并查集!! 我们首先可以知道,因为最后就只有小写字母的前8个,所以我们考虑联通块情况,最多只需要7次转换,所有字串就一定可能相同。 然后如果小于7次......我们可以先预处理出同位字符与其对应字符对应的最大数(啊啊啊,语文掉线了qwq不知道怎么表述啊qwq),就是比如同位(同一列)a对应的有两个b,一个c。。。我们先把个数存下来,然后之后转换的时候肯定选取较大的那个转换(a转换成b而不是c)(emmmm。。。如果这个不理解的话,可以把我代码里的注释去掉看一下就明白了qwq) 然后就是init(),我们把每个字母的每次转换都进行连边操作,将他们的sum值记录成边权值。 之后因为转换存在传递性,我们就执行并查集合并操作,因为肯定是每次转换尽可能让更多的同位字母相等,所以我们可以先将边权从大到小排序,然后每次选大的那个连起来,之后合并qwq(这样肯定是最优的),注意如果连的边达到k个要及时跳出。 之后呢就是最后的统计ans,我们将每个字串和其匹配字串都枚举一边,然后逐个判断是否合法。。。。感觉时间复杂度还是有点高的qwq但是可能是因为及时return+评测机快qwq跑的还是很快的qwq。。。。。。 代码如下:

#include

#include

#include

#include

#define MAXN 110

using namespace std;

int n,l,k,edge_number,cnt,ans;

int sum[10][10],fa[10],done[MAXN][MAXN];

char s[MAXN][1100];

struct Edge{int x,y,len;}edge[MAXN];

bool cmp(struct Edge x,struct Edge y){return x.len>y.len;}

inline void init()

{

for(int i=0;i<8;i++)

for(int j=i+1;j<8;j++)

{

edge[++edge_number].x=i;

edge[edge_number].y=j;

edge[edge_number].len=sum[i][j];

}

}

inline int find(int x)

{

if(fa[x]==x) return x;

else return fa[x]=find(fa[x]);

}

inline bool check(int x,int y)

{

for(int i=0;i

if(find(s[x][i]-'a')!=find(s[y][i]-'a')) return false;

return true;

}

int main()

{

scanf("%d%d%d",&n,&l,&k);

for(int i=1;i<=n;i++)

scanf("%s",&s[i]);

for(int i=1;i<=n;i++)

for(int j=i+1;j<=n;j++)

for(int q=0;q

if(s[i][q]!=s[j][q])

sum[s[i][q]-'a'][s[j][q]-'a']++,sum[s[j][q]-'a'][s[i][q]-'a']++;

/*for(int i=0;i<8;i++)

{

for(int j=0;j<8;j++)

cout<

cout<

}*/

init();

for(int i=0;i<8;i++) fa[i]=i;

sort(edge+1,edge+1+edge_number,cmp);

for(int i=1;i<=edge_number;i++)

{

int a=find(edge[i].x);

int b=find(edge[i].y);

if(a!=b)

fa[a]=b,cnt++;

if(cnt==k) break;

}

for(int i=1;i<=n;i++)

{

for(int j=i+1;j<=n;j++)

{

if(done[i][j]||done[j][i]) continue;

if(check(i,j))

{

ans++;

done[i][j]=1;

done[j][i]=1;

}

}

}

printf("%d\n",ans);

return 0;

}

(话说nowcoder的评测真的快qwq)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值