圆锥曲线:椭圆小题 解题报告
注意事项:
由于本人水平有限,可能存在Markdown崩坏,部分题目解题方法可能非最优解,如有更好方法欢迎在评论区指正。
部分题目解答可能过于口语化,导致并不符合官方(人教版教材)的要求,请各位在考试中不要学习,使用正确的,符合要求的用语。
本文中可能存在错别字,望发现者在评论区指正。
本篇博客是为记录本人在完成学校作业的过程中遇到的问题,同时给部分同学作为解题参考用。
本篇博客中绘制图像的工具是geogebra。
[TOC]
1~10题:
1
题目:
已知F~1~,F~2~是椭圆$x^2/4+y^2/3=1$的两个焦点,点P在椭圆上。
(1)若点P到焦点F~1~的距离等于1,则点P到焦点F~2~的距离为()
(2)过F~1~做直线与椭圆交于A,B两点,则$\Delta$ABF~2~的周长为()
(3)$\angle$PF~1~F~2~=120^。^,则点P到焦点F~1~的距离为()
解答:
根据方程容易得出a=2,b=1;因为P在椭圆上,则点P到焦点F~2~,F~1~的距离为2a=4;而PF~1~=1,所以PF~2~=3。
由题意易得$\Delta$ABF~2~的周长为4a=8.
因为$\angle$PF~1~F~2~=120^。^,所以得到方程$cos\angle$PF~1~F~2~=$(PF~1~^2+(2a-PF1^2)-F1F2^2)/2PF1(2a-PF2)$,解出来PF~1~=$\sqrt{3}/3$.
其实可以猜一下,此时P点和椭圆上定点重合,算出来是对的。
2
题目:
已知椭圆C:$x^2/25+y^2/m^2=1(m>0)$的左右焦点分别为F~1~,F~2~,点P在C上,且$\Delta$PF~1~F~2~的周长为16,则m的值是()
解答:
由题意得a=5,而$\Delta$PF~1~F~2~的周长为16=2a+2c,所以c=3。$a^2-c^2=b^2$,所以b^2^=m^2^=16,m=4.
3
题目:
椭圆以x轴,和y轴位对称轴,经过点(2,0),长轴长是短轴的两倍,则椭圆方程()
解答:
由题意得a=2b.若焦点在x轴上a=2b=1,椭圆方程为$x^2/4+y^2=1$;
若焦点在y轴上,b=2a=4,椭圆方程为$x^2/4+y^2/16=1$.
4
题目:
已知F~1~(-1,0),F~2~(1,0)是椭圆C的两个焦点,过F~2~且垂直于x轴的直线交C于A,B两点,且$|AB|=3$,则椭圆的方程为()
解答:
由题意得c=1,$|AB|=3=2b^2/a$.
因为$b^2=a^2-c^2$,所以$3=2(a^2-1)/a$,解得a=2或a=-0.5(舍)。所以b=3。椭圆方程为$x^2/4+y^2/3=1$.
5
题目:
已知椭圆的方程为$2x^2+3y^2=m(m>0)$,则此椭圆的离心率为()。
解答:
方程可变化为$2x^2/m+3y^2/m=1$,所以$a^2/b^2=(2/m)/(3/m)$,因为$e=\sqrt{1-a^2/b^2}$,所以$e=\sqrt{5}/3$.
6
题目:
已知椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$的两焦点分别为F~1~,F~2~,若椭圆上存在点P,使得$\angle$F~1~PF~2~=120^。^,则椭圆离心率的取值范围()
解答:
当P在椭圆上,下顶点上时$\angle$F~1~PF~2~最大,不妨设上顶点为A。为了满足$\angle$F~1~PF~2~=120^。^,$\angle$F~1~AF~2~>=120^。^,$\angle$F~1~AO>=60^。^,所以$tan\angle F~1~AO= c/a>= \sqrt{3}/2$;则$e\in[\sqrt3/2,1]$.
7
题目:
已知F~1~F~2~是椭圆C:$x^2/a^2+y^2/b^2=1(a>b>0)$的左右焦点,A是C的左顶点,点P在过A且斜率为$\sqrt{3}/6$,的直线上,$\Delta$PF~1~F~2~为等腰三角形,$\angle$F~1~F~2~P=120^。^,则C的离心率为()
解答:
设A(-a,0),F~1~(-c,0),F~2~(c,0),所以直线AP的方程为$y=\sqrt{3}/6x+\sqrt{3}/6a$,
由题意得|PF~2~|=|F~1~F~2~|=2c,所以P(2c,$\sqrt{3}c$);
代入直线方程可得a=4c;所以e=1/4;
8
题目:
已知椭圆C:$x^2/a^2+y^2/b^2=1(a>b>0)$的左右顶点A~1~,A~2~,且以线段A~1~A~2~为直径的圆与直线bx-ax+2ab=0相切,则C的离心率为()
解答:
由题意得直线到圆心的距离$d=|2ab|/\sqrt{(a^2+b^2)}=a$,所以$a^2/b^2=3$,$e=\sqrt{1-b^2/a^2}=\sqrt{6}/3$.
9
题目:
已知椭圆C的焦点为F~1~(-1,0),F~2~(1,0),过F~2~的直线与c交于A,B两点,若|AF~2~|=2|F~2~B|,|AB|=|BF~1~|,则C的方程为()
A.$x^2/2+y^2=1$ B.$x^2/3+y^2/2=1$ C.$x^2/4+y^2/3=1$ D.$x^2/5+y^2/4=1$
解答:
|BF~1~|+|F~2~B|=2a,由题意得|AB|+|BF~2~|=2a$\Rightarrow$4|BF~2~|=2a;
所以|AF~1~|=|AF~2~|=a,所以A为短轴端点,$cos\angle AF2O=1/a$,
$cos\angle BF1F2=(4+(a/2)^2-(3a/2)^2)/2a=(2-a^2)/a$
因为$\angle AF2O+\angle BF1F2=\pi$,
所以$cos\angle AF2O+cos\angle BF1F2=0$.
$1/a+(2-a^2)/a=0\Rightarrow a=\sqrt{3}$.
所以b^2^=2,
故选B。
10
题目:
已知椭圆$X^2/a^2+y^2/b^2=1(a>b>0)$的离心率为1/2,则()
A,a^2^=2b^2^ B,3a^2^=4b^2^ C,a=2b D,3a=4b
解答:
$e=\sqrt{1-b^2/a^2}=1/2\Rightarrow b^2/a^2=3/4 \Rightarrow 3a^2=4b^2$.
故选B。
11
题目:
曲线C:$x^2+y^2=1+|x|y$,如图,给出下面三个结论:
曲线C恰好经过6个整点(即横纵坐标均为整数的点);
曲线C上任一一点到原点的距离都不超过$\sqrt{2}$;
曲线C所围成的“心形”区域面积小于3.
其中正确结论的序号是()
解答:
将x换成-x方程不变,所以图像关于y轴对称,当x=0时代入得y^2^,y=+1或-1,即曲线过(0,1),(0.-1);当x>0时,方程变为$y^2-xy+x^2-1=0$,所以$\Delta=x^2-4(x^2-1)>=0$,解得$x\in(0,2\sqrt{3}/3]$,所以x只能取整数1,当x=1时,y=0或1,曲线过(1,1),(1,0);由对称性得曲线还过(-1,1)和(-1,0),故1正确。
当x>0时,因为$x^2+y^2=1+xy$,得$x^2+y^2-1=xy<=(x^2+y^2)/2(iff x=y时取等)$,所以$x^2+y^2<=2$,易得曲线C上任意一点到原点距离不超过$\sqrt{2}$,故2正确。
S~心~>=$21+12*0.5>=3$,故3错误。
12
题目:
已知椭圆$x^2/9+y^2/5=1$的左焦点F,点P在椭圆上且在x轴上方,若线段PF的中点以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是()。
解答:
由题意得圆的方程为$x^2+y^2=4$.设直线PF方程为y=kx+b,P(m,n)。则PF中点M为($(m-2)/2$,$(km+b)/2$)。
M点在圆上,所以$(m-2)^2/4+n^2/2=4$;M在椭圆上,所以$m^2/9+y^2/5=1$.
所以$4m^2-36m-63=0 \Rightarrow m=-3/2或 m=21/2(舍)$。
k~PF~=$(\sqrt{15}/2-0)/(-3/2-(-2))=\sqrt{15}$.
其实还有一种解法,我会补上的~~(咕咕咕)~~
13
题目:
设F~1~,F~2~为椭圆C:$X^2/36+y^2/20=1$两个焦点,M为C上一点且在第一象限。若$\Delta$MF~1~F~2~为等腰三角形,则M的坐标为()
解答:
设M(m,n)(m>0,n>0);F~1~F~2~=8。$a=6,b=2\sqrt{5},c=4,e=c/a=2/3$.
因为M在第一象限,可得|MF~1~|>|MF~2~|,
可能|MF~1~|=2c,或|MF~2~|=2c。
即$6+2m/3=8 \Rightarrow m=3 or 6-2m/3=8 \Rightarrow m=-3(舍)$。
所以M$(3,\sqrt{15})$。
14
题目:
已知椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$的离心率为$\sqrt{5}/3$,椭圆上一点P到两焦点距离之和为12,则椭圆短轴长为()。
解答:
由题意得2a=12,a=6;$e=\sqrt{1-b^2/a^2}=\sqrt{5}/3 \Rightarrow b=4$,2b=8.
此时憨憨plz意识到可以拿手机拍另外一张空白的卷子,而不是手打。
15~19题
15
题目:
点P(0,1),椭圆 $x^2/4+y^2=m(m>1)$上两点A,B满足$\overrightarrow{AP}=2\overrightarrow{PB}$,则当m=()时点B横坐标的绝对值最大。
解答:
设A(x~1~,y~1~),B(x~2~,y~2~);
-x~1~=2x~2~,1-y~1~=2(y~2~-1),
因为$x1^2+4y1^2=4m $ $x2^2+4y2^2=4m$ ;所以$(y1-2y2)(y1+2y2)=-3m \Rightarrow y1-2y2=-m \Rightarrow y1=(3-m)/2,y2=(3+m)/4$;
则$m=x2^2+((3-m)/2)^2=(-m^2+10m-9)/4$
即m=5时,B横坐标绝对值最大。
16
题目:
已知椭圆C:$x^2/4+y^2=1$上的三点A,B,C,斜率为负数的直线BC与y轴交与M,若原点O是$\Delta$
ABC的重心,且$\Delta$BMA与$\Delta$CMO的面积之比为3/2,则直线BC的斜率为()
解答:
设B(x~1~,y~1~),C(x~2~,y~2~),M(0,m),A(x~3~,y~3~),直线BC方程为y=kx+m
因为O是$\Delta$ABC的重心;所以$\Delta$BMA与$\Delta$CMO的高之比为3.
因为$\Delta$BMA与$\Delta$CMO的面积之比为3/2,则2BM=MC.
即$2\overrightarrow{BM}=\overrightarrow{MC},\Rightarrow 2x1+x2=0$
联立$\begin{cases} y=kx+m\x^2+4y^2=4\end{cases}\Rightarrow(4k^2+1)x^2+8mkx+4m^2-4=0$.
$x1+x2=-8km/(1+4k^2),x1x2=(4m^2-4)/(1+4k^2)$
所以$36k^2m^2=1-m^2+4k^2$
因为原点O是$\Delta$ABC的重心,所以$x3=-(x1+x2)=8km/(1+4k^2),y3=-(y2+y1)=-[k(x1+x2)+2m]=-2m/(1+4k^2)$.
因为$x3^2+4y3^2=4$ ,所以$(8km/(1+4k^2))^2+4(-2m/(1+4k^2))^2 \Rightarrow 1+4k^2=4m^2$
得到$k^2=1/12$ 因为k<0,所以k=$-\sqrt{3}/6$.
17
解答:
由直线l为$\angle$F~1~PF~2~的外角平分线l垂直于F~2~M,可得|PM|=|PF~2~|
a=5;2a=|PF~1~|+|PF~2~|=|PF~1~|+|PM|=|F~1~M|=10
18
解答:
19
解答:
由题意得|PF~2~|的max为a+c=9,min为a-c=1;
所以a=5,c=4;
e=c/a=4/5
20~29题
20
解答:
由题意得直线AB和$4x-2y-3=0$垂直,设直线AB方程为$y=-x/2+m$,与椭圆方程联立得$x^2-2mx+2m^2-2=0$,由题意得$\Delta=4m^2-4(2m^2-2)>0,则有m^2<2$,设A(x~1~,y~1~),B(x~2~,y~2~),因为x~1~+x~2~=2m,所以线段AB中点D(m,m/2),D在直线$4x-2y-3=0$上,代入得m=1,所以$|\overrightarrow{OD}|=\sqrt{5}/2$,$|\overrightarrow{OA}+\overrightarrow{OB}|=2|\overrightarrow{OD}|=\sqrt{5}$.
为了避免不必要的Markdown崩坏,下面的题目解答将现在Typora上编辑完成后,生成正确预览,再截图保存,使用图片的形式呈现。
21
解答:
22
解答:
23
解答:
24
此题由于plz太菜了,不会做,希望各位大佬在评论区教教我
25
解答:
26
解答:
27
解答:
28
解答:
29
解答:
30~40题
30
解答:
31
解答:
32
解答:
33
解答:
34
解答:
35
解答:
36
解答:
37
解答:
38
解答:
39
解答:
40
解答:
完结撒花 2019年10月5日00:03:49