做自然语言处理的时候很多时候会用的Word Embedding,训练词向量的方法主要有两条路:
- 一个是利用了全局特征的矩阵分解方法。例如基于SVD的LSA算法,该方法对term-document矩阵(矩阵的每个元素为tf-idf)进行奇异值分解,从而得到term的向量表示和document的向量表示。此处使用的tf-idf主要还是term的全局统计特征。
- 另一个方法是利用局部上下文的方法。例如word2vec算法,该算法可以分为skip-gram 和 continuous bag-of-words(CBOW)两类,但都是基于局部滑动窗口计算的。
GloVe模型就是将这两中特征合并到一起的,即使用了语料库的全局统计特征,也使用了局部的上下文特征。为了做到这一点GloVe模型引入了Co-occurrence Probabilities Matrix。
- 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息。
- 输入:语料库
- 输出:词向量
- 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。
共现概率矩阵(Co-occurrence Probabilities Matrix)
共现矩阵

最低0.47元/天 解锁文章
5220

被折叠的 条评论
为什么被折叠?



