python flink kafka_Flink with Kafka

本文详细介绍了Apache Flink如何管理Kafka消费者的offset,通过六个步骤展示了Flink从Kafka消费数据并进行checkpoint的过程,确保在故障恢复时能够实现精确一次的处理。Flink-Kafka连接器保证事件的exactly-once交付,同时避免了由于背压产生的问题,具有高吞吐量,便于应用开发者使用。
摘要由CSDN通过智能技术生成

How Apache Flink manages Kafka consumer offsets

Step 1:

例子:一个kafka topic,有两个partition,每个含有"A,B,C,D,E"信息。offset从0开始。

Step 1

Step 2:

第二步,kafka consumer开始从partition 0开始读取信息,"A"正在处理,第一个consumer的offset变成了1。

Step 2

Step 3:

第三步,“A”到达了Flink Map Task。每个consumer继续读取他们下一个记录(partition 0读取“B”,partition 1读取“A”)。各自更新offset,同时Job Master开始触发checkpoint。

Step 3

Step 4:

接下来,kafka consumer已经创建他们的状态快照(“offset = 2, 1”),存在了Job Master。Source从partition 0和1分别发出“B”和“A”后面发出了checkpoint barrier。在operator task中对barriers进行align操作,保证了一致性。消息A到达Flink Map Task,而上面的consumer继续读取下一个记录(消息“C”)。

Step 4

Step 5:

当 Flink Map Task 从sources接收到了全部的checkpoint barriers(同一版本的barrier),那么就会checkpoint他的state到Job Master里面。同时,consumers继续读取记录。

Step 5

Step 6:

当所有的task报告完成了他们的state checkpoint后,那么Job Master就会完成这个版本的checkpont。那么这个checkpoint就可以用于故障恢复了。值得一提的是,Apache Flink并不依赖于kafka的offsets来从潜在的系统故障中恢复。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值