四川交通职业技术学院计算机二级,明天考计算机了。

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

。:

第五大神兽——挂蝌,卦蝌是一种十分凶残的两栖生物!它似乎来自草泥码戈壁,因为只要有它出现,必定会有一群草泥码尾随其后!它性喜吃素,主要是大雪参,也会吃些中雪参,小雪参。好在它出现前有许多预兆,例如假如你突然看到补脊鸽,那么你就要小心了!还有千万别接近高树!

挂蝌

【生物学分类】

挂蝌属于两栖生物,是开蜍的幼体。挂蝌无毒,但发育成开蜍后,就是一种有剧毒的蟾蜍类生物,其毒素在生物学上成为复毒。所幸并不是所有的挂蝌都能最终发育成开蜍,据清华大学学生会统计,平均每四只挂蝌才有一只能成为开蜍。不过如果不采取措施,让挂蝌随意繁殖,必定会出现大量开蜍。

【生活环境】

挂蝌通常生活在草泥玛戈壁上的湿地中,据说只要有它出现,必定会有一群草泥玛尾随其后。而数学分溪、黎曼几河等水域常常是挂蝌的聚居地,因为这些水域周围通常生长着大量的高树。高树的存在使得挂蝌的生活场所不被暴露,相对开阔地更加安全。

【食物】

挂蝌性喜吃素,主要以大雪参为食,也会吃些中雪参,小雪参。挂蝌通常与补脊鸽同时出现,两者在生物学上成为共生。补脊鸽是一种凶猛的肉食禽类,以捕捉其他鸟类为食,最喜欢的食物就是雪芬鸡。而雪芬鸡是雪参的守护鸟类,于是挂蝌和补脊鸽狼狈为奸分工合作,先由补脊鸽捕食雪芬鸡,使得大量雪参处于无保护状态,然后挂蝌趁机大快朵颐。挂蝌的食量惊人,每年有无数大雪参惨遭吞噬。

【天敌】

自然界是公平的,任何生物都有天敌,而挂蝌的天敌之一就是春鸽。春鸽是翱翔在草泥玛戈壁上空的禽中之王,补脊鸽尽管凶猛,但遇到春鸽就会落荒而逃。挂蝌由于行动缓慢,无法逃走,只能被春鸽捕食。不过生活在高树庇护下的挂蝌常常能因为隐蔽得较好而逃过一劫。春鸽曾经数量很少,濒临灭绝,据说最危险的时候只存活一只,但是他很给力,通过无性繁殖,这个族群逐渐庞大起来,并且出现了变异种增鸽。

挂蝌的另一种天敌是复蜥。这种爬行类动物行动敏捷,在凌晨0点至3点是其活跃的高峰期,而这个时候挂蝌通常已经进入休眠状态,复蜥便会在挂蝌毫无防备的情况下将其捕食。不过这些年来,由于大疣蜥、税澜蛟的出现,复蜥的数量正在急剧下降。

此外,在清华大学土木系,由于这里春鸽、增鸽已经绝迹,而复蜥的饲养成本很高,于是不少人膜拜一种嗜盐的啮齿类生物,称为盐耗。这种生物与

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值