计算机科学导论(机械工业出版社)刘艺 瞿高峰 习题答案.doc
以下答案为查阅多方资料做的,仅供参考。
第一章 绪论
1. 和计算机相关的问题.
2. 冯.诺依曼模型.
3. 第一点:尽管这个模型能够体现现代计算机的功能,但是它的定义太广泛.
第二点:而且,并没有清楚地说明基于这个模型的机器能够完成的操作类型和数量.
4. 输入数据和程序.
5. 存储器,算术逻辑单元,控制单元和输入/输出单元.
6. 存储器是用来存储的区域,在计算机处理过程中用来存储数据和程序.
7. 算术逻辑单元是进行计算和逻辑判断的地方.
8. 控制单元是用来对存储器,算术逻辑单元,输入/输出单元等子系统的操作进行控制的单元.
9. 输入子系统负责从计算机外部接受输入数据和程序;输出子系统负责将计算机的处理结果输出到计算机外部.
10. 早期的计算机的存储器存储数据.而完成某一任务的程序是通过操作一系列的开关或改变配线系统来实现的.
而基于冯.诺依曼模型的计算机的存储器主要用来存储程序及其相应的数据.
11.编程在早期的计算机中体现为对系列开关的开闭和配线系统的改变.
而冯.诺依曼模型通过详细的第一计算机可以使用的不同指令集,从而使编程变得相对简单.程序员通过组合这些不同的指令来创建任意数量的程序.
从而改变了编程的概念.
12. B
13. C
14. A
15. B
16. D
17. C
18. D
19. C
20. A
21. D
22. A
23. C
24. D
25. D
26. D
第二章
略
第三章 数的表示
1. 将十进制转换成二进制,则反复采用底数除法.将要转换的数反复除2,所得余数做为从右往左的数.直到除数为1,作为最左端的数.
2. 将所给的二进制的数每个二进制数字分别乘以它的权值,最后将每个二进制位乘以权值后的结果相加即得到相应的十进制数.
3. 第N位是2的N-1次幂.
4. 第N位是10的N-1次幂.
5. 符号加绝对值格式,二进制反码格式和二进制补码格式.
6. 计算机定义一个最大的无符号整数的常量,这样,计算机所能存储的无符号整数就介于0到该常量之间.也就定义了一个存值范围.
7. 位数分配是指用以表示整数的二进制位数.
8. 因为8位的存储单元中,范围最大的无符号整数类型的范围是0~255,256超出其存储范围,在计算机中不能存储.
9. 计数和寻址.
10. 溢出.
11. 一样.
12. 符号加绝对值:在N位的存储单元中,将该负数忽略其负号,然后转换成N-1位的二进制数,不足位数左边补0.最后在最左边加1.
二进制反码:在N位的存储单元中,将该负数忽略其负号,然后转换成N位的二进制数,不足位数左边补0.最后,将其每一位换成它的反码形式.(0->1,1->0).
二进制补码: 在N位的存储单元中,将该负数忽略其负号,然后转换成N位的二进制数,不足位数左边补0.最后,将最右边的所有0和首次出现的1保持不变,其余位取反.
13. 0在符号加绝对值中的形式有N个0,表+0;最左边为1其右边带上N-1个0,表-0.
在二进制反码中的形式有N个0,表+0;N个1,表-0.
在二进制补码中的形式有N个0.
14. 符号加绝对值可以表示的数的范围:-(2^(N-1)-1) ~ (2^(N-1)-1).
二进制反码可以表示的数的范围: -(2^(N-1)-1) ~ (2^(N-1)-1).
二进制补码可以表示的数的范围: -2^(N-1) ~ (2^(N-1)-1).
15. 最左边一位在符号加绝对值中表示数的正负性.在二进制反码中表示数的正负性.在二进制补码中表示数的正负性.
16.~19.*
20. C
21. A
22. D
23. D
24. B
25. C
26. D
27. D
28. C
29. D
30. D
31. C
32. B
33. D
34. ~46*
47.例子: 23. 23/2=11…1, 11/2=5…1, 5/2=2…1, 2/2=1…0, 剩1. 即:10111,所以其八位无符号整数即
48.例子: 41. 41/2=20…1, 20/2=10…0, 10/2=5…0, 5/2=2…1, 2/2=1…0, 剩1. 即:101001,所以其16位无符号整数为0000000000101001.
49. 例子:-101, 去其负号. 101/2=50…1, 50/2=25…0, 25/2=12…1, 12/2=6…0, 6/2=3…0, 3/2=1…1, 剩1. 即:1100101. 其8位符号加绝对值即补足7位,再在最左边加1表负数. 即
50. 同上.
51. 例子:-110, 去其负号, 110/2=55…0, 55/2=27…1