空间域图像增强c语言,第三章 空间域图像增强 83页.ppt

《第三章 空间域图像增强 83页.ppt》由会员分享,可在线阅读,更多相关《第三章 空间域图像增强 83页.ppt(83页珍藏版)》请在人人文库网上搜索。

1、第3章 空间域图像增强,一个指纹图像增强的实例,主要内容 3.1 简介 3.2 基本灰度变换 3.3 直方图处理(难点) 3.4 算术/逻辑操作增强 3.5 平滑空间滤波器 3.6锐化空间滤波器 3.7 在图像增强中使用直方图统计学 (一个精妙的例子,自学) 3.8 混合空间滤波器:(又一个精妙的例子,自学),3.1 简介 1 图像增强的定义 图像增强是一类基本的图像处理技术,其目的是对图像进行加工,以得到对视觉解释来说视觉效果“更好”、或对机器感知效果来说“更有用”的图像。 (1)视觉效果更好的例子,(2)机器感知效果更好的例子 “特征脸”,2 图像增强的分类 (1)空间域增强和频率域增强 。

2、(2)空间域增强方法分类 g(x,y)=T(f(x,y) A、点操作 B、邻域操作 C、图像集操作,3.2 基本灰度变换 1 图像反转 (1)公式表示:灰度级范围0,L-1时 s=L-1-r,0,255,255,()特点:“实现反白”。,灰度图像实例,彩色图像实例,()应用范围: 特别适用于嵌入于图像暗色区域的白色或灰色细节。,2 对数变换 (1)公式表示 s=c* log(1+r) (2)特点 “ 扩展低输入,压缩高输入”。 ()应用范围 当原图动态范围太大,超出显示设备的范围 时,如直接显示原图则一部分细节可能丢失。此时 可采用对数变换。如傅里叶频谱的显示。,3 幂次变换 (1)公式表示,。

3、(2)特点: 非常灵活。 ()应用范围 比较广泛,可代替对数变换和反对数变换。,4 分段线性变换 (1)对比度拉伸,(2)特点: “压缩两端的背景的动态范围, 扩展中段的目标的动态范围”,(2)灰度切分,特点:突出目标的轮廓,消除背景细节,特点:突出目标的轮廓,保留背景细节,3.3 直方图处理 1 直方图 (1)概念 灰度直方图表示图像中每种灰度出现的像素数目。,(2)直方图的作用,反映一幅图像的灰度分布特性。,(3)归一化直方图的计算,式中:nk为图像中出现rk级灰度的像素数,n是图像像素总数,而nk/n即为频数。 随堂练习: 计算归一化直方图,2 直方图均衡化 (1)灰度变换函数 假说满足。

4、以下条件: A、T(r)在区间0 r 1中为单值且单调递增; (单值是为了保证反变换的存在; 单调递增条件保持输出图像从黑到白顺序增加) B、当0 r 1时,0 T(r) 1。 (输出灰度范围一致),从s到r 的反变换: r =T (s),()概率密度函数之间的变换,证明:(自学内容),由概率论理论可知,如果已知随机变量的概率密度函数为pr(r),而随机变量是 的函数,即=T(), 的概率密度为ps (s),所以可由pr(r)求出ps (s)。,因为s=T(r)是单调增加的,因此它的反函数r=T-1(s)也是单调函数。在这种情况下,s且仅当r时发生,所以可以求得随机变量的分布函数为(推导),对。

5、上式两边求导,即可得到随机变量的分布密度函数ps (s)为,通过变换函数T(r)可以控制图像灰度级的概率密度函数,从而改变图像的灰度层次。这就是直方图修改技术的理论基础。,(3)累积分布函数(CDF),(4)s的概率密度均匀(均衡化),(5)离散情况下的算法: A、列出原始图像的灰度级 B、统计各灰度级的像素数目 C、计算原始图像直方图各灰度级的频数 D、计算累积分布函数 F、应用以下公式计算映射后的输出图像的灰度级,P为输出图 像灰度级的个数,其中INT为取整符号:,G、用映射关系修改原始图像的灰度级,从而获得直方图近似为均匀分布的输出图像。,举例:,随堂练习:对下列图像进行直方图均衡化,(。

6、6)直方图均衡化的效果,1) 由于数字图像是离散的,因此直方图均衡化并不能产 生具有理想均衡直方图的图像,但可以得到一幅灰度分布更为均匀的图像。 2)变换后一些灰度级合并,因此灰度级减少。 3)原始象含有象素数多的几个灰级间隔被拉大了,压缩的只是象素数少的几个灰度级,实际视觉能够接收的信息量大大地增强了,增加了图象的反差和图象的可视粒度。,补充材料:直方图均衡化的缺陷 1 直方图均衡化的问题 不能实现直方图的理想均衡。 原因分析 数字图像是离散的。直方图均衡化方法是一对一或者多对一的映射关系,即原图像的某一灰度级或某几个灰度级只能映射为均衡化图像的一个灰度级,因此不能实现理想的均衡。 创新思路。

7、 要想实现直方图的理想均衡化,就必须破除传统直方图均衡化方法所蕴含的一对一或者多对一映射关系的理论前提,实现灰度级多对多的映射关系。,技术路线 ()邻域测度 邻域测度(或邻域算子)定义为: k0,是锐化系数。 下面解释公式的物理含义。当f(x,y)比它的8邻域均值大时,变换后邻域测度将比f(x,y)大;相应的,当f(x,y)比它的8邻域均值小时,变换后邻域测度将比f(x,y)小。因此,邻域测度(或邻域算子)可以看作为一个锐化算子,k(锐化系数)的大小决定了锐化的强度。,()排序 对邻域测度空间的值进行由小到大的排序。 () 均匀分段 排序完成后,按照原始图像的灰度级数进行均匀分段。例如,如果原。

8、始图像是256灰度级的,则均匀分为256段,每段的像素的数目基本相等,最多相差1。 ()均衡化映射 按分段的先后顺序,每段中的数据分别赋值为0,1,L-1(L为灰度级数)。然后,每段中的每个数据根据在排序过程中保存的位置关系,映射回图像中。,实验结果,该创新实例的点评,3.4 用算术/逻辑操作增强 1 算术操作 (1)加法操作 C(x,y) = A(x,y) + B(x,y) A、图像叠加(特技处理),B、图像平均处理(去除噪声),(2)减法操作 C(x,y) = A(x,y) - B(x,y) 减法的最主要作用是突出两幅图像的差异,常用于医学影像中的变化监测,或固定场景中的运动监测。,思考题。

9、:为什么车辆亮度变暗?,(3)乘法操作(乘以常数、模板操作等) 除法操作(一幅图像乘以另一幅图像的取反),2 逻辑操作(把灰度值作为二进制串) 随堂练习:39的“非”,39和25的“与”及“或”。 (1)与、或 可用于从一幅图像中提取子图像。,(2)非 可以实现图像取反。 (3)异或 练习:用第二幅图像对第一图像进行两次异或运算, 并写出两次异或运算的结果。(4比特图像),思考题:从这个例子中,我们可以的得到什么启示?,异或操作可以实现图像的加密和解密。,3.5 空间滤波器基础 1 邻域处理 对邻域图像和相同大小的子图像进行操作。该子图像被称为滤波器、窗口、掩模、模版或核。 (举例:二维) 2。

10、 空间线性滤波 在待处理图像中逐点地移动掩模,每点的响应由滤波器系数与滤波掩模扫过的相应像素值得乘积之和给出。,思考题:相关与卷积是什么关系? 在什么情况下它们的运算结果是相同的? 为什么要引入卷积?,3 空间非线性滤波 在待处理图像中逐点地移动掩模(该掩模没有滤波器系数),每点的响应取决于所考虑的邻域像素的值,响应与邻域像素的值之间的关系是非线性的。 4 边界处理 (1)掩模中心的移动范围限制在距离图像边缘不小于(n-1)/2个像素处。 (2)完全滤波+部分滤波。 (3)边缘补零或复制。,3.6平滑空间滤波 1、平滑滤波器的作用 (1)减小噪声; (2)模糊处理。 2、平滑线性滤波器,输出是。

11、包含在线性掩模邻域内的简单平均值。,随堂练习:平滑处理,图像的邻域平均法 (a) 原始图像; (b) 邻域平均后的结果,观察下面两幅图,总结邻域平均的效果。,结论: 经过邻域平均法处理后,虽然图像的噪声得到了抑制,但图像细节也变得相对模糊了。,(a)原图像 (b)3*3均值滤波 (c)5*5均值滤波 (d)9*9均值滤波 (e)15*15均值滤波 (f)36*35均值滤波,观察6幅图,总结邻域平均模板大小对滤波结果的影响。,结论: 对相同类型的平滑滤波器,滤波器尺寸越大,噪声滤除效果愈好,但细节模糊效应也越强。,3、统计排序滤波器 (1)定义 统计滤波器是一种非线性滤波器,它的响应基于图像滤波。

12、器包围的图像区域中像素的排序,然后由排序结果决定的值代替中心像素的值。包括最小值滤波器、最大值滤波器、中值滤波器等。 (2)中值滤波器,2,3,4,5,6,6,6,7,8,随堂练习:中值滤波;最小值滤波,(3)实例及结论,观察以下几个实例,对比中值滤波和邻域平均滤波的各自特点。,图4-24 噪声平滑实验图像 (a) Lena原图; (b) 高斯噪声; (c) 椒盐噪声; (d) 对(c)平均平滑; (e) 对(b)平均平滑; (f) 对(b)55中值滤波; (g) 对(c)55中值滤波,中值滤波消除雀斑,中值滤波消除雀斑,结论: 1、与平滑滤波器相比,中值滤波在去除噪声的同时,能更好地保持图像。

13、的噪声。 2、中值滤波器适用于椒盐噪声污染的图像,平滑滤波适用于高斯噪声污染的噪声。,问题: 平滑空间滤波器(平滑线性滤波器和统计排序滤波器)在抑制噪声的同时,也模糊了细节,是否存在既抑制噪声、又保持细节的滤波器呢?,图像边缘保持类噪声滤波器: (1)k近邻平滑滤波器 (2)灰度最小方差的均值滤波器 (3)对称近邻均值滤波器 (4)平滑滤波器(几何均值滤波器) ,3*3均值滤波器 9近邻均值滤波器 性能分析:边界保持类滤波器细节更清楚,但耗时较长。,有兴趣的同学,能否自学一些边界保持类滤波器后,设计一种新的边界保持类滤波器呢?,3.7 锐化空间滤波器 锐化空间滤波其的性能: (1)突出图像中的。

14、细节或增强被模糊的细节; (2)加大了图像中的噪声。,1 基础 (1)微分的性质 A、在平坦段,微分值为零; B、在灰度变化段,微分值非零。 (2)一阶微分和二阶微分的差分定义:,2 基于二阶微分的图像增强 (1)拉普拉斯算子,练习:进行Laplacian锐化,拉普拉斯锐化的特点: (1)对噪声敏感; (2)产生双边缘;,3、缓慢区域产生暗背景。,改进措施:(复合拉普拉斯算子) 将原始图像和拉普拉斯图像相叠加,既能保护拉普拉斯锐化处理的效果,同时又能复原背景信息。,(2)简化处理,(3)反锐化掩蔽与高提升滤波处理 A、反锐化掩蔽,B、高提升滤波,3 基于一阶微分的图像增强 (1)梯度算子,对噪声敏感,对噪声不太敏感,小结 平滑滤波器:系数都为正,一般系数之和等于1。 锐化滤波器:系数有正有负,若没有提升,系数之和等 于0;否则,系数之和大于零。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>