java潜龙谍影,我的世界:三个选择下界合金装备的理由!下界合金到底有多稀有?...

在我的世界中用于制造装备的材料有很多,比如初级的皮革装备,木剑,又或者是大家熟悉的“钻石套装”。一般来说材料越稀有越难获得,制造出的武器装备就越精良。而在1.16更新后,“材料界一哥”钻石也悄然退位,取而代之的是新宠儿——下界合金。

c1ca3b375afd412d9ce6c768daa3a0eb.png

在了解下界合金之前,我们需要了解一个新的矿石:远古残骸。远古残骸就是我们获取下界合金的一大途径,一个远古残骸矿石可以在熔炉中熔炼出一个下界合金碎片,而下界合金矿正是由它合成的,千万不要被云玩家的“下界合金矿石”骗了哦~

8fd3c749c7e8cf82a04cc7217850b521.png

在工作台中,四个下界合金碎片和四个金锭可以合成一个下界合金锭,这个合成是无序的,也就是说我们可以随意摆放。是不是感觉获得下界合金锭好像很简单?那你可就大错特错了!问题就出在远古残骸的获取上。

7b74dd3f26db2b1e9c384be3b772cf5a.png

图中有着树干年轮般花纹的石头就是远古残骸了,可不要小看它,它的稀有度可谓是“下界中的钻石”。远古残骸在下界中是以矿脉的形式刷新的,但糕点在实际寻找中发现它并不好找,第一块远古残骸糕点是在堡垒遗迹的墙边发现的,很不起眼而且很容易被忽略~在整个堡垒遗迹中糕点只找到了一块远古残骸。

7ee7cb02b0f026f13d573887f386a1a5.png

第二块远古遗迹的获取更加艰难,糕点找遍了附近所有的空岛都没有见到,最后索性在平地用床爆破,终于在十多次的爆破后找到了一块远古遗迹,前前后后也用了半个小时之久。可见获得一块下界合金锭是多么的不容易~在堡垒遗迹中的箱子有一定概率直接获得一块下界合金锭,但可能性也仅有不到两成。

5875b66389aca7a9dd460e41c61c6f31.png

没想到吧,下界合金装备是必须由钻石装备升级而来的!例如在锻造台中我们可以用钻石胸甲加上下界合金锭来合成下界合金胸甲,而下界合金防具自带击退抗性,下界合金剑更是有着比钻石剑还高一点的基础伤害,非常恐怖。这也就是我们选择它的第一大原因。

b2ccea1357fc290077836fe2700b0a46.png

下界合金装备是免疫火焰的。在Java版中,下界合金装备落入岩浆中会缓慢地飘起来浮在岩浆上,而基岩版的它则更加有个性。当糕点的下界合金胸甲落入岩浆中时它会疯狂地在岩浆上“跳跃”,直到落到地面上为止~

434a98a3c9ffc3e8b0f990cccb4808a0.png

第三点就是他的稀有度啦~想想在和小伙伴一起玩生存的时候这样一套下界合金装备是多么的高端大气上档次低调奢华有内涵呢~

本文到这里就结束了,喜欢本文记得给糕点点点关注支持一下哦~更多MC小知识定期更新,生存模式中你最多获得过多少下界合金呢?快来评论区和大家炫耀一下吧~

想了解更多精彩内容,快来关注糕点游戏攻略

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景样性: 包含白天/夜间、近距离/远距离、单体/群体等种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据样性突出: - 包含静态、动态种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值