在广告和推荐系统当中,一个重要的衡量指标就是点击率,也即是CTR(Click Through Rate)。
计算公式: CTR = 点击数 / 曝光数
也有一种衡量指标是 uvCTR。 uvCTR = 点击uv数 / 曝光uv数。
考虑 CTR = 点击数 / 曝光数 这个公式的指标,只考虑了比例的关系,但没考虑样本数大小。因为样本数少的情况下,这个比例其实是不准确的;而样本数越大,这个比例越准确,越能反映真实情况。
举个例子,有三个广告:
A:点击数 2 曝光数 10
B:点击数 20 曝光数 100
C:点击数 200 曝光数 1000
它们的 CTR 都是 0.2 。但是很明显,从置信度来讲,是 C > B > A。因为C的样本数更多,C 的 0.2 CTR更加反映真实,更加可信。
为了衡量样本数对于 CTR 置信区间的影响,我们引入"威尔逊(Wilson)区间"的概念。公式如下:
p —— 概率,在这里指点击的概率,也就是 CTR
n —— 样本总数。在这里指 曝光数
z —— 在正态分布里,均值 + z * 标准差 会有一定的置信度。例如 z 取 1.96,就有 95% 的置信度。
Wilson区间的含义就是,就是指 在一定置信度下, 真实的 CTR 范围是多少。举一个例子,如下面

本文探讨了在广告和推荐系统中,如何利用威尔逊区间来修正样本数较少的点击率(CTR)以提高置信度。通过示例展示了如何计算不同广告的CTR置信区间,并说明了在实际应用中如何使用最低值作为修正后的Wilson CTR,从而对样本不足的CTR进行降权处理。
最低0.47元/天 解锁文章
1563

被折叠的 条评论
为什么被折叠?



