计算机三级网络技术考试形式,计算机等考三级网络技术考试知识点

本文介绍了互联网应用的多个方面,包括基于WEB应用的普及、搜索引擎技术的演进、播客和博客的兴起、网络电视(IPTV)的运用以及P2P技术在文件分享中的角色。这些技术极大地改变了信息交流的方式,推动了电子政务、电子商务、远程教育和信息服务等领域的发展。
摘要由CSDN通过智能技术生成

计算机等考三级网络技术考试知识点

计算机等考三级网络技术考试:互联网应用的发展

626b8c83351d922ecd49cd693c26b98d.png

互联网应用的发展

1.基于WEB应用的发展

WEB技术的出现使互联网从最初的主要由计算机专家和大学生使用,变为一种被广泛使用的信息交流工具;同时使得网站的数量和网路的通信量呈指数增长,已经广泛应用于电子政务、电子商务、远程教育与信息服务等领域,并有继续扩大的'趋势。

2.搜索引擎技术的发展

搜索引擎是运行在WEB上的应用系统软件,是对网络上大量资源建立索引并提供检索服务的应用软件。

3.播技术的应用

播客(Podcast)是基于互联网的数字广播技术之一。

根据节日类型的不同分为:传统节目的播客、专业播客提供商与个人播客。

4.博客技术的应用

博客(blog)指以文章的形式在互联网上实现信息共享。在技术上属于网络共享空间,在形式上属于个人互联网出版类的应用。

5.网络电视的应用

网络电视(IPTV)通过宽带IP网络传输,可以实现与用户的互动点播,同时能够方便地将传统电视与WWW、E-MAIL等互联网结合起来。

6.P2P技术的应用

P2P网络中的每一台计算机既可以作为网络服务的使用者,又可以作为网络服务的提供者。

【计算机等考三级网络技术考试知识点】相关文章:

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值