怎么用计算机sinB=0.67,在线|二轮辅导[07][三角函数+解三角形03]

视频地址

百度云盘地址:

使用方法:下载观看,能保证高清清晰度,针对百度网盘限速,请使用PanDownload软件下载,该软件的下载地址:https://www.lanzous.com/i8ua9na;

典型例题

例1【2015$\cdot$全国卷Ⅰ】在平面四边形$ABCD$中,$\angle A=\angle B=\angle C=75^{\circ}$,$BC=2$,则$AB$的取值范围是___________。

分析:本题目非常特别,依据题意我们做出的图形是平面四边形,

当我们将边$AD$平行移动时,题目的已知条件都没有改变,故想到将此静态图变化为动态图,

平行移动$AD$时,我们看到了两个临界位置,即四边形变化为三角形的两个状态,

其一是四边形变化为三角形$ABF$,此时应该有$BF

其二是四边形变化为三角形$ABE$,此时应该有$BE>AB$;

故动态的边$AB$的范围是$BF

解答:如图所示,延长$BA$与$CD$交于$E$,过$C$做$CF//AD$交$AB$于$F$,则$BF

在等腰三角形$CFB$中,$\angle FCB=30^{\circ}$,$CF=BC=2$,由余弦定理得到$BF=\sqrt{6}-\sqrt{2}$;

在等腰三角形$ECB$中,$\angle CEB=30^{\circ}$,$\angle ECB=75^{\circ}$,$BE=CE,BC=2$,

由正弦定理得到$BE=\sqrt{6}+\sqrt{2}$;

故$\sqrt{6}-\sqrt{2}

解后反思引申:

1、求$CD$的取值范围;

分析:由上述的动态图可知,$0

2、求$AD$的取值范围;

分析:由上述的动态图可知,$0

3、求四边形$ABCD$的周长的取值范围;

分析:四边形$ABCD$的周长介于$\Delta BCF$的周长和$\Delta BCE$的周长之间,

故其取值范围是$(4+\sqrt{6}-\sqrt{2},2(\sqrt{6}+\sqrt{2})+2)$;

4、求四边形$ABCD$的面积的取值范围;

分析:四边形$ABCD$的面积介于$\Delta BCF$的面积和$\Delta BCE$的面积之间,

$S_{\Delta BCF}=\cfrac{1}{2}\times 2\times 2\times sin30^{\circ}=1$;

$S_{\Delta BCE}=\cfrac{1}{2}\times (\sqrt{6}+\sqrt{2})\times (\sqrt{6}+\sqrt{2})\times sin30^{\circ}=2+\sqrt{3}$;

故其取值范围是$(1,2+\sqrt{3})$;

例2【2018宝鸡市二检文科理科第17题】已知函数$f(x)=4sinxsin(x+\cfrac{\pi}{3})$,在$\Delta ABC$中,角$A、B、C$的对边分别是$a、b、c$,

(1)、当$x\in [0,\cfrac{\pi}{2}]$时,求函数$f(x)$的取值范围。

分析:先将函数变形为正弦型函数$f(x)=2sin(2x-\cfrac{\pi}{6})+1$,其中$x\in [0,\cfrac{\pi}{2}]$,

题目转化为正弦型函数在限定区间上的值域问题,常规题目,$f(x)\in [0,3]$

(2)、若对任意的$x\in R$,都有$f(x)\leq f(A)$,$b=2$,$c=4$,点$D$是边$BC$的中点,求$AD$的长。

【解答的共有部分】对任意的$x\in R$,都有$f(x)\leq f(A)$,则$f(A)\geqslant f(x)_{max}$;

$f(x)=2sin(2x-\cfrac{\pi}{6})+1,x\in R$,则$f(x)_{max}=3$,

即$f(A)\geqslant 3$又$f(A)=2sin(2A-\cfrac{\pi}{6})+1$

故有$2sin(2A-\cfrac{\pi}{6})+1\geqslant 3$,即$sin(2A-\cfrac{\pi}{6})\geqslant 1$,

又由正弦函数的值域范围可知,此时只能取$sin(2A-\cfrac{\pi}{6})=1$,

即$2A-\cfrac{\pi}{6}=\cfrac{\pi}{2}$,故$A=\cfrac{\pi}{3}$。

【法1】:余弦定理法,先由余弦定理得到$BC=2\sqrt{3}$,则$BD=CD=\sqrt{3}$,

设$\angle ADB=\alpha$,$\angle ADC=\beta$,则有$cos\alpha+cos\beta=0$。

55fe9d1cb7d8ad7729fca8735c78f09c.png

再设$AD=x$,又$cos\alpha=\cfrac{x^2+(\sqrt{3})^2-4^2}{2\cdot\sqrt{3}\cdot x}$;$cos\beta=\cfrac{x^2+(\sqrt{3})^2-2^2}{2\cdot\sqrt{3}\cdot x}$;

代入方程$cos\alpha+cos\beta=0$得到,$x=AD=\sqrt{7}$。

【法2】:要求$AD$,由$AD=|\overrightarrow{AD}|$,而$|\overrightarrow{AD}|=\sqrt{\overrightarrow{AD}^2}$,

$\overrightarrow{AD}=\cfrac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,则$\overrightarrow{AD}^2=\cfrac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})^2$

c762bfd043a442b4d4f77baeef4c27e9.png

则$|\overrightarrow{AD}|^2=\cfrac{1}{4}(|\overrightarrow{AB}|^2+|\overrightarrow{AC}|^2+2|\overrightarrow{AB}||\overrightarrow{AC}|cos60^{\circ})$

$=\cfrac{1}{4}(4^2+2^2+2\times4\times2\times\cfrac{1}{2})=7$

故$AD=|\overrightarrow{AD}|=\sqrt{7}$;

【法3】由题目可知,先由余弦定理得到$BC=2\sqrt{3}$,则由$AB=4,AC=2$,可知$\Delta ABC$为$Rt\Delta$,

7d12fe8a6133c343095cdecf60c2c7e9.png

则有$AC=2$,$CD=\sqrt{3}$,故由勾股定理可知,$AD=\sqrt{7}$。

解后反思:1、向量法和余弦定理法都是大家应该掌握的常见的思路方法,其中向量法这个思路,对学生和老师而言,都不是那样的自如应用。

例3【2018宝鸡市三检文科第17题】已知向量$\vec{a}=(2sinx,\sqrt{3}cosx)$,$\vec{b}=(-sinx,2sinx)$,$f(x)=\vec{a}\cdot \vec{b}$,

(1)求$f(x)$的单调递增区间;

分析:(1)$f(x)=\vec{a}\cdot\vec{b}=2sinx\cdot (-sinx)+\sqrt{3}cosx\cdot 2sinx$,

$=\sqrt{3}sin2x+cos2x-1=2sin(2x+\cfrac{\pi}{6})-1$;

令$-\cfrac{\pi}{2}+2k\pi \leq 2x+\cfrac{\pi}{6}\leq \cfrac{\pi}{2}+2k\pi$

得到$-\cfrac{\pi}{3}+k\pi \leq x\leq \cfrac{\pi}{6}+k\pi$

故$f(x)$的单调递增区间为$[-\cfrac{\pi}{3}+k\pi,\cfrac{\pi}{6}+k\pi](k\in Z)$

(2)在$\Delta ABC$中,$a、b、c$分别是角$A、B、C$的对边且$f(C)=1$,$c=1$,$ab=2\sqrt{3}$,$a>b$,求$a、b$的值。

分析:由$f(C)=1$,即$2sin(2C+\cfrac{\pi}{6})-1=1$,即$sin(2C+\cfrac{\pi}{6})=1$,

则有$2C+\cfrac{\pi}{6}=\cfrac{\pi}{2}$,故$C=\cfrac{\pi}{6}$;

又$c=1$,$ab=2\sqrt{3}$,由余弦定理得到

$c^2=1=a^2+b^2-2abcos\cfrac{\pi}{6}$,

即$a^2+b^2=7$,联立$ab=2\sqrt{3}$,

解得$a=2,b=\sqrt{3}$或$a=2,b=\sqrt{3}$,

由于$a>b$,故$a=2,b=\sqrt{3}$。

例4已知$\cfrac{\pi}{2}

分析:先由给定的不等式求解$\alpha\pm \beta$的范围,以便于求解其余名函数的值,为后续的计算打基础。

由$\cfrac{\pi}{2}

故$\pi

由$sin(\alpha+\beta)=-\cfrac{3}{5}$,得到$cos(\alpha+\beta)=-\cfrac{4}{5}$;

又由$\cfrac{\pi}{2}0$

得到$0

$sin2\alpha=sin[(\alpha+\beta)+(\alpha-\beta)]$

$=sin(\alpha+\beta)cos(\alpha-\beta)+cos(\alpha+\beta)sin(\alpha-\beta)=-\cfrac{56}{65}$

又$(sin\alpha+cos\alpha)^2=1+sin2\alpha=\cfrac{9}{65}$

又由于$\cfrac{\pi}{2}

则有$sin\alpha+cos\alpha>0$,

故$sin\alpha+cos\alpha=\sqrt{\cfrac{9}{65}}=\cfrac{3\sqrt{65}}{65}$。

例5【三轮模拟考试理科用题】在$\Delta ABC$中,已知$4cos^2\cfrac{A}{2}-cos2(B+C)=\cfrac{7}{2},a=2$,则$\Delta ABC$的面积的最大值为________.

分析:将已知等式变形为$2\cdot 2cos^2\cfrac{A}{2}-[cos^2(B+C)-sin^2(B+C)]=\cfrac{7}{2}$,

即$2(1+cosA)-cos2A=\cfrac{7}{2}$,即$2(1+cosA)-(2cos^2A-1)=\cfrac{7}{2}$,

化简为$4cos^2A-4cosA+1=(2cosA-1)^2=0$,

解得$cosA=\cfrac{1}{2},A\in(0,\pi)$,故$A=\cfrac{\pi}{3}$,

到此题目转化为已知$A=\cfrac{\pi}{3},a=2$,求$\Delta ABC$的面积的最大值。

由余弦定理$a^2=b^2+c^2-2bccosA,A=\cfrac{\pi}{3},a=2$得到$b^2+c^2=4+bc\ge 2bc$,

解得$bc\leq 4(当且仅当b=c=2时取到等号)$,

则$S_{\Delta ABC}=\cfrac{1}{2}bcsinA \leq \cfrac{\sqrt{3}}{4}\times 4=\sqrt{3}$.

例6【三角函数和解三角形和向量结合】已知函数$f(x)=cosxsinx-\sqrt{3}cos^2x+\cfrac{\sqrt{3}}{2}$,

(1)求函数$f(x)$的单调递增区间

分析:函数化简为$f(x)=sin(2x-\cfrac{\pi}{3})$,过程略,$[k\pi-\cfrac{\pi}{12},k\pi+\cfrac{5\pi}{12}](k\in Z)$

(2)在$\Delta ABC$中,$A$为锐角且$f(A)=\cfrac{\sqrt{3}}{2}$,$\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}$,$AB=\sqrt{3}$,$AD=2$,求$sin\angle BAD$。

分析:由$f(A)=sin(2A-\cfrac{\pi}{3})=\cfrac{\sqrt{3}}{2}$,解得$A=\cfrac{\pi}{3}$或$A=\cfrac{\pi}{2}$(舍去)。

又由于$\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}$,如图所示,

992978-20190210205623381-1673082306.jpg

$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AE}=2\overrightarrow{AF}=2\cdot \cfrac{3}{2}\overrightarrow{AD}=3\overrightarrow{AD}$,

故点$D$为$\triangle ABC$的重心,详细说明$;;$^wh01 (点击这个蓝色的数字)

在$\triangle ABC$中,若已知$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AE}$,则可知点$E$为边$BC$的中点; 在$\triangle ABC$中,已知$\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}$,可知点$D$为$\triangle ABC$的重心; 具体解释如下图所示, 若已知$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AE}$,或者$\overrightarrow{AE}=\cfrac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,则可知点$E$为$BC$的中点;

e88a7886a85111e1cc70f7166cf44412.png 已知$\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}$,则$3\overrightarrow{AD}=2\overrightarrow{AE}$,则$\overrightarrow{AD}=\cfrac{2}{3}\overrightarrow{AE}$,可知点$D$为$\triangle ABC$的重心;

以$AB$、$AC$为邻边做平行四边形$ABEC$,由于$AD=2$,则$AE=6$,

在$\Delta ABE$中,$AB=\sqrt{3}$,$\angle ABE=120^{\circ}$,

由正弦定理可得,$\cfrac{\sqrt{3}}{sin\angle AEB}=\cfrac{6}{\cfrac{\sqrt{3}}{2}}$,

可得$sin\angle AEB=\cfrac{1}{4}$ ,$cos\angle AEB=\cfrac{\sqrt{15}}{4}$,

故$sin\angle BAD=sin(\cfrac{\pi}{3}-\angle AEB)$

$=\cfrac{\sqrt{3}}{2}\times \cfrac{\sqrt{15}}{4}-\cfrac{1}{2}\times \cfrac{1}{4}=\cfrac{3\sqrt{5}-1}{8}$。

解后反思:利用已知的向量三角形,巧妙的构造了一个三角形,这样就能利用正弦定理和两角差的正弦公式求解了。

例7(2017$\cdot$全国卷I)已知$\Delta ABC$的内角$A,B,C$的对边分别是$a,b,c$,$S_{\Delta ABC}=\cfrac{a^2}{3sinA}$;

(1)求$sinBsinC$的值;

(2)若$6cosBcosC=1$,$a=3$,求$\Delta ABC$的周长;

分析:(1)由$S_{\Delta ABC}=\cfrac{1}{2}acsinB=\cfrac{a^2}{3sinA}$,

变形得到$\cfrac{1}{2}csinB=\cfrac{a}{3sinA}$,

边化角,得到$\cfrac{1}{2}sinCsinB=\cfrac{sinA}{3sinA}$,

故$sinBsinC=\cfrac{2}{3}$。

(2)由于求三角形周长的题目,一般都会知道一条边和其对角,现在知道了边$a$,故猜想应该能求得$A$,

这样想,我们一般就会将条件作差而不是作商,

由$cosBcosC-sinBsinC=-\cfrac{1}{2}$,

即$cos(B+C)=-cosA=-\cfrac{1}{2}$,得到$A=\cfrac{\pi}{3}$;

由题意$\cfrac{1}{2}bcsinA=\cfrac{a^2}{3sinA}$,$a=3$

得到$bc=8$;

再由余弦定理得到$a^2=b^2+c^2-2bccosA$,

得到$3^2=(b+c)^2-2bc-2bccosA$,即$b+c=\sqrt{33}$;

故周长为$3+\sqrt{33}$。

例8【2016$\cdot$全国卷Ⅰ】已知$\Delta ABC$的内角$A,B,C$的对边分别是$a,b,c$,$2cosC(acosB+bcosA)=c$;

(1)、求角$C$

(2)、若$c=\sqrt{7}$,$S_{\Delta ABC}=\cfrac{3\sqrt{3}}{2}$,求$\Delta ABC$的周长。

分析:(1)由正弦定理边化角,得到

$2cosC(sinAcosB+sinBcosA)=sinC$;即$2cosCsin(A+B)=sinC$

即$2cosCsinC=sinC$,又$sinC\neq 0$,故$2cosC=1$,即$cosC=\cfrac{1}{2}$,

又$C\in (0,\pi)$ ,故$C=\cfrac{\pi}{3}$;

(2)由已知$S_{\Delta ABC}=\cfrac{3\sqrt{3}}{2}=\cfrac{1}{2}absinC$,$C=\cfrac{\pi}{3}$;

故$ab=6$,由余弦定理得到,$c^2=a^2+b^2-2abcosC=(a+b)^2-2ab-2abcosC$,

结合$C=\cfrac{\pi}{3}$,$ab=6$,$c=\sqrt{7}$,代入上式得到

$(a+b)^2=25$,即$a+b=5$,故三角形的周长为$a+b+c=5+\sqrt{7}$。

例9【2016宝鸡市第二次质量检测第17题】在$\Delta ABC$中,已知$sin^2A+sin^2B+sinAsinB=sin^2C$,其中角$A、B、C$的对边分别为$a、b、c$,

(1).求角$C$的大小。

(2).求$\cfrac{a+b}{c}$的取值范围。

分析:(1)角化边,由$\cfrac{a}{2R}=sinA,\cfrac{b}{2R}=sinB,\cfrac{c}{2R}=sinC$

得到$a^2+b^2+ab=c^2$,即$a^2+b^2-c^2=-ab$,

故由余弦定理得到$cosC=\cfrac{a^2+b^2-c^2}{2ab}=-\cfrac{1}{2}$,

又$C\in (0,\pi)$,故$C=\cfrac{2\pi}{3}$。

(2)由(1)可知,$A+B=\cfrac{\pi}{3}$,即$A=\cfrac{\pi}{3}-B$

边化角,由$a=2RsinA,b=2RsinB,c=2RsinC$

$\cfrac{a+b}{c}=\cfrac{sinA+sinB}{sinC}=\cfrac{2\sqrt{3}}{3}(sinA+sinB)$

$=\cfrac{2\sqrt{3}}{3}[sin(\cfrac{\pi}{3}-B)+sinB]=\cfrac{2\sqrt{3}}{3}[\cfrac{\sqrt{3}}{2}cosB-\cfrac{1}{2}sinB+sinB]$

$=\cfrac{2\sqrt{3}}{3}(\cfrac{1}{2}sinB+\cfrac{\sqrt{3}}{2}cosB)=\cfrac{2\sqrt{3}}{3}sin(B+\cfrac{\pi}{3})$,

又由$\begin{cases}B>0\ \cfrac{\pi}{3}-B>0\end{cases}$得到$0

故$\cfrac{\pi}{3}

则有$1

即$\cfrac{a+b}{c}$的取值范围为$(1,\cfrac{2\sqrt{3}}{3}]$。

引申:上述思路可以求解$msinB+nsinC$的取值范围($m、n$是实数)。

例10在锐角三角形$ABC$中,$C=2B$,则$\cfrac{c}{b}$的取值范围是$(\sqrt{2},\sqrt{3})$

分析:本题先将$\cfrac{c}{b}=\cfrac{sinC}{sinB}=2cosB$,

接下来的难点是求$B$的范围,注意列不等式的角度,锐角三角形的三个角都是锐角,要同时限制

由$\begin{cases} &0

解得$B\in (\cfrac{\pi}{6},\cfrac{\pi}{4})$,故$2cosB \in (\sqrt{2},\sqrt{3})$。

例11【2017$\cdot$皖北协作区3月联考】【求取值范围】如图,$\angle BAC=\cfrac{2\pi}{3}$,$P$为$\angle BAC$内部一点,过点$P$的直线与$\angle BAC$的两边交于点$B、C$,且$PA\perp AC$,$AP=\sqrt{3}$。

(1)若$AB=3$,求$PC$;

11fdcbd19bafdd11aca5db9871aabffa.png

分析:在$\Delta ABP$中,$\angle BAP=30^{\circ}$,$AB=3$,$AP=\sqrt{3}$,

由余弦定理得到$BP=\sqrt{3}$,故$\angle BAP=\angle PBA=30^{\circ}$,

则$\angle APC=60^{\circ}$,在$Rt\Delta APC$中,可得$PC=2\sqrt{3}$。

(2)求$\cfrac{1}{PB}+\cfrac{1}{PC}$的取值范围。

分析:设$\angle PBA=\theta$,则$\theta\in (0,\cfrac{\pi}{3})$;

(说明:当过点$P$的直线和$AB$平行时,$\theta=0$;当过点$P$的直线和$AC$平行时,$\theta=\cfrac{\pi}{3}$)

在$\Delta ABP$中,$\angle BAP=30^{\circ}$,$\angle PBA=\theta$,$AP=\sqrt{3}$,

故由正弦定理得到$\cfrac{PB}{sin30^{\circ}}=\cfrac{\sqrt{3}}{sin\theta}$,即$PB=\cfrac{\cfrac{\sqrt{3}}{2}}{sin\theta}$;

在$Rt\Delta APC$中,$\angle CPA=\theta+\cfrac{\pi}{6}$,$PC=\cfrac{\sqrt{3}}{cos(\theta+\cfrac{\pi}{6})}$,

故$\cfrac{1}{PB}+\cfrac{1}{PC}=\cfrac{2sin\theta}{\sqrt{3}}+\cfrac{cos(\theta+\cfrac{\pi}{6})}{\sqrt{3}}$

$=\cfrac{1}{\sqrt{3}}(\cfrac{3}{2}sin\theta+\cfrac{\sqrt{3}}{2}cos\theta)$

$=sin(\theta+\cfrac{\pi}{6})$,且$\theta\in (0,\cfrac{\pi}{3})$;

故$\cfrac{1}{2}

例12【2019学生问题】[转化划归+恒成立问题+分离参数+换元法+求最值]函数$f(x)=cos2x+a(sinx-cosx)$在区间$[0,\cfrac{\pi}{2}]$上单调递增,求实数$a$的取值范围。

分析:由于函数$f(x)=cos2x+a(sinx-cosx)$在区间$[0,\cfrac{\pi}{2}]$上单调递增,

则$f'(x)\ge 0$在区间$[0,\cfrac{\pi}{2}]$上恒成立,

又$f'(x)=-2sin2x+a(cosx+sinx)\ge 0$在区间$[0,\cfrac{\pi}{2}]$上恒成立,

由于$x\in [0,\cfrac{\pi}{2}]$,$cosx+sinx>0$,故用完全分离参数法,得到,

$a\ge \cfrac{2sin2x}{sinx+cosx}$在区间$[0,\cfrac{\pi}{2}]$上恒成立,

题目转化为求函数$g(x)=\cfrac{2sin2x}{sinx+cosx}$的最大值问题。

令$sinx+cosx=t=\sqrt{2}sin(x+\cfrac{\pi}{4})$,则$t\in [1,\sqrt{2}]$,

则$sin2x=t^2-1$,则函数$g(x)=h(t)=\cfrac{2(t^2-1)}{t}=2(t-\cfrac{1}{t})$,

又函数$h'(t)=1+\cfrac{1}{t^2}>0$在$t\in [1,\sqrt{2}]$上恒成立,

故函数$h(t)$在$t\in [1,\sqrt{2}]$上单调递增,

故$g(x){max}=h(t){max}=h(\sqrt{2})=\sqrt{2}$,

故$a\ge \sqrt{2}$。即$a\in [\sqrt{2},+\infty)$。

例13【2019届宝鸡理数质检Ⅲ第22题】在直角坐标系$xoy$中,圆$C$的参数方程为$\left{\begin{array}{l}{x=2+2cos\alpha}\{y=2sin\alpha}\end{array}\right.$ $\quad(\alpha 为参数)$,以$O$为极点,$x$轴的非负半轴为极轴建立极坐标系,直线$l$的极坐标方程为$\rho(\sqrt{3}sin\theta+cos\theta)=1$.

(Ⅰ)求$C$的极坐标方程;

分析:消参,得到圆$C$的普通方程为$(x-2)^2+y^2=4$,将$x=\rho cos\theta$,$y=\rho sin\theta$代入圆$C$的普通方程,化简整理得到$C$的极坐标方程为$\rho=4cos\theta$;

(Ⅱ)射线$\theta=\theta_1$,$(\theta_1\in [\cfrac{\pi}{6},\cfrac{\pi}{3}],\rho>0)$与圆$C$的交点为$O$、$P$,与直线$l$的交点为$Q$,求$|OP|\cdot |OQ|$的取值范围。

分析:设$P(\rho_1,\theta_1)$,则有$\rho_1=4cos\theta_1$,

设$Q(\rho_2,\theta_1)$,又直线$l$的极坐标方程是$\rho(\sqrt{3}sin\theta+cos\theta)=1$,则$\rho_2=\cfrac{1}{\sqrt{3}sin\theta_1+cos\theta_1}$,

所以,$|OP|\cdot |OQ|=\rho_1\rho_2=\cfrac{4cos\theta_1}{\sqrt{3}sin\theta_1+cos\theta_1}=\cfrac{4}{\sqrt{3}tan\theta_1+1}$,

又$\theta_1\in [\cfrac{\pi}{6},\cfrac{\pi}{3}]$,则$tan\theta_1\in [\cfrac{\sqrt{3}}{3},\sqrt{3}]$,则$1\leq |OP|\cdot |OQ|\leq 2$,故$|OP|\cdot |OQ|$的取值范围为$[1,2]$.

解后反思:①经过极点的线段,其长度用极坐标表示比用直角坐标表示有更大的优越性。②当题目中出现线段和或者线段积时,采用极坐标思考和运算要简单的多。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值