南京matlab,matlab

48:多变量函数的Taylor幂级数展开

F=maple(‘mtaylor’,f,’[x1,…,xn]’,k)

F=maple(‘mtaylor’,f,’[x1=a1,…,xn=a1]’,k)

表示在x1=a1,…,xn=an处展开,k-1为展开的最高阶次,f为原多变量函数 49:Fourier级数展开,可根据系数的求法自行编写函数 50:级数求和的计算

S=symsum(fk,k,k0,kn),fk为级数的通项,k0 kn为级数求和的起始项与终止项; 若fk变量中只有一个变量,则在函数调用时可以省略k量 51:序列求积问题,

maple(‘product(fun,n=a..b)’)或maple(‘product’,fun,’n=a..b’)

52:曲线积分与曲面积分的计算根据数学表达式转化为matlab语言,并利用int()函数进行计算 矩阵

53:生成特殊矩阵的函数 1) zeros(n)全零n阶方阵,ones(n)全1n阶方阵,eye(n)单位矩阵,zeros(m,n)m*n

全零矩阵,zeros(size(B))生成和矩阵B同样维数的全零矩阵;zeros()和ones()还可用于多维数组的生成

2) rand(n)生成n阶标准均匀分布伪随机矩阵,rand(n,m) n*m矩阵 3) randn(n)生成n阶标准正态分布的随机数矩阵 4) 对角矩阵

diag(V)已知向量V生成对角矩阵

diag(A)已知矩阵A提取对角元素列向量

diag(V,k)生成主对角线上第k条对角线为V的矩阵

5) Hankel矩阵,每条反对角线上所有的元素相同,用函数hankel(C,R)生成,先将

H矩阵的第一列的各个元素定义为C向量,将最后一行各个元素定义为R向量;因此最后一行的第一个元素应该等于第一列的最后一个元素

6) Hilbert()矩阵,第(i,j)元素等于1/(i+j-1),用函数hilb(n)生成,invhilb(n)则生

成Hilbert逆矩阵

7) Vandermonde矩阵,V=vander(C) C为一向量 8) 伴随矩阵 A=compan(P) P为一多项式 54:矩阵的一些基本性质 1) 行列式 det(A)可求得矩阵A的行列式 2) 迹 trace(A)即对角线上各项的和 3) 秩 rank(A)或rank(A,c) 给定精度c下求数值秩 在符号运算工具箱中也提供了 4) Norm(A,选项),允许求各种意义下得矩阵范数,选项表的选项有1(1-范数)

2(矩阵的最大奇异值)inf(无穷范数)‘fro’(Frobinius范数) P范数,对向量可取任何整数,而对矩阵只可取1,2,inf或’fro’ -inf 只可用于向量 符号运算工具箱中未提供norm()函数

5) 特征多项式,c=poly(A) 求矩阵A的特征多项式 6) 矩阵多项式的求解,B=polyvalm(a,A)

7) 符号多项式与数值多项式的转换 数值多项式构成了向量p,可用f=poly2sym(p)或f=poly2sym(p,x) (以x为算子表示多项式)将数值多项式转化为符号多项式

55:矩阵的逆矩阵

C=inv(A) 同样适用于符号变量构成的矩阵的求逆,也适用于含有变量的矩阵 对于非奇异矩阵,无逆矩阵,可能有错误提示信息或警告信息 对于Hilbert矩阵,有invhibl(V)函数可直接求得逆矩阵 56:广义逆矩阵

若ANA=A,则称N为A的广义逆矩阵

M=pinv(A) M=pinv(A,c) 57:矩阵的特征值与特征向量

d=eig(A) 只求特征值,d为一向量 [V,D]=eig(A) 求特征值与特征向量,V中得每列为矩阵A的一个特征向量,D是一个对角矩阵,对角线上的值即是特征值 符号运算工具箱中也提供了该函数 (变换矩阵是由特征向量构成的矩阵,即矩阵V) 58:矩阵的正交矩阵 orth()函数可直接得出,该矩阵与本身的共轭转置矩阵相乘为单位矩阵;且可作为相似变换矩阵

59:一般矩阵的三角分解,也称为LU分解

[L,U]=lu(A) 得到的L为下三角矩阵,且主对角线上的元素都为1;U为上三角矩阵;该函数考虑主元素选取的问题,一般会给出可靠的结果,但L不一定是真正的下三角,且主对角线上的元素不一定都是1

[P,L,U]=lu(A) P为单位阵变换出的置换矩阵,可获得有关换行信息

60:对于对称矩阵A,可以分解为A=L*(L的转置)matlab提供了chol()函数 L=chol(A) 返回上三角矩阵

61:一个对称矩阵,若所有的主子行列式均为整数,则该矩阵为正定矩阵

可以利用chol()函数判定,调用格式为 [D,p]=chol(A) 若A为正定矩阵,则p为0;若p不为0,则p-1是A矩阵中正定的子矩阵的阶次,即D为(p-1)阶方阵

非对称矩阵调用函数chol(),不会报错,但结果是错误的,它首先将给定的矩阵强制按上三角子矩阵转换成对称矩阵

62:求解线性方程组 Ax=B 判定矩阵C=[A B]

若有唯一解,x=A-1*B为方程的解,利用matlab可以得到x=inv(A)*B

若rank(A)=rank(C)=r64:求矩阵的任意函数 A1=funm(A,’函数名’)

代数方程与最优化问题

65:图解法(只适用于一二维)

ezplot()绘制隐函数曲线,然后根据交点来判断根 ezplot(‘f’,[min,max])画出f=0在区间上的图像 图解法只能求出实根,无法求出复根 66:solve函数

S=solve(eqn1,eqn2,…) 返回结构体变量S [x,…]=solve(eqn1,eqn2,…)

[x,…]=solve(eqn1,eqn2,…,’x,…’)

67:line()

line([起点横坐标,终点横坐标],[起点纵坐标,终点纵坐标]) line(a,b),a b是相同大小的矩阵时,会再对应的每一列做一条直线 line(a,b,c) 相应的会在三维图中画直线

68:eval() Execute string with MATLAB expression 69:一般非线性方程的数值解

x=fsolve(Fun,x0)

[x,f,flag,out]=fsolve(Fun,x0,opt,p1,p2…)

Fun为需求解的函数,一般使用匿名函数@;方程求根从x0开始以逐步减小误差的算法搜索出满足方程的实根x;若返回的flag大于0,则说明求解成功,第二个式子的f表示求出的x代回原方程得到的误差

70:求解无约束最优化的函数fminsearch() fminunc() x=fminunc(Fun,x0)

[x,f,flag,out]=fminunc(Fun,x0,opt,p1,p2…)

输入与返回参数的定义与fsolve()函数中的控制变量一致 71:带有变量边界约束的最优化问题求解

x=fminsearchbnd(Fun,x0,xm,xM)

[x,f,flag,out]=fminsearchbnd(Fun,x0,xm,xM,opt,p1,p2…) xm,xM为上下界 72:线性规划问题

Ax=B

Aeqx=Beq xm<=x<=xM

[x,fopt,flag,c]=linprog(f,A,B,Aeq,Beq,xm,xM,x0,OPT,p1,p2…)

其中fopt为最优化的值,f为目标函数,其中的约束条件没有的话可以置为空[] 73:二次型规划的求解

[x,fopt,flag,c]=quadprog(H,f,A,B,Aeq,Beq,xm,xM,x0,OPT,p1,p2…)

其中H为二次型规划目标函数中的H矩阵,其余各个变量同线性规划函数调用的一致 74:一般非线性规划问题的求解

[x,fopt,flag,c]=fmincon(F,x0,A,B,Aeq,Beq,xm,xM,CF,OPT,p1,p2…)

F为给目标函数写的M函数或inline()函数,x0为初始搜索点;各个约束约束若不存在,则应该用空矩阵来占位。CF为给非线性约束函数写的M函数,OPT为控制选项。最优化的结果在变量x中返回,最优值在fopt中返回。 75:0-1线性规划问题(自变量为0或1) x=bintprog(f,A,B,Aeq,Beq)

76:无约束多目标函数的最小二乘解

[x,nv,fopt,flag,c]=lsqnonlin(F,x0,xm,xM)

其中F是目标函数,可为M函数、匿名函数或inline()函数,该函数为向量函数,即多个目标;从x0开始搜索,最优结果在x中返回,最优值在fopt中,范数在nv中返回

也可转化为单目标问题进行求解,思路是给每个目标函数加权,并取不同加权方案下得最优方案

目标函数为一个矩阵时,可通过求最佳妥协解来球的,先单独求出每个单目标函数的最优化问题,得出最优解fk;然后通过规范化构造单独的目标函数;便转化为了单目标线性规划问题

77:极小极大问题求解,在最不利的条件下寻找最有利决策方案的一种方法

[x,fopt,flag,c]=fminmax(F,x0,A,B,Aeq,Beq,xm,xM,CF,OPT,p1,p2,…)

F为给目标函数写的M函数或inline()函数,此处为向量函数;x0为初始搜索点;各个约束约束若不存在,则应该用空矩阵来占位。CF为给非线性约束函数写的M函数,OPT为控制选项。最优化的结果在变量x中返回,最优值在fopt中返回。 78:图在matlab中常用矩阵表示和处理

已知某个图由n个节点构成,图中含有m条边,由ai节点出发到bi节点的边权值为wi,则可以建立三个向量,由它们构造出关联矩阵 A=[a1,a2,…,am,n] B=[b1,b2,…,bm,n] W=[w1,w2,…,wm,0] R=sparse(a,b,w);

关联矩阵形式如下:

79:常规矩阵,一个图有n个节点,则用一个n*n矩阵来表示,若节点i到节点j的权值为k,则相应的元素R(i,j)=k;若不存在边,则R(i,j)=0.

可通过full()函数将关联矩阵转换成常规矩阵,也可通过sparse()函数将常规矩阵转换成关联矩阵,关联矩阵也称稀疏矩阵 80:有向图的路径寻优

P=biograph(R) 根据关系矩阵R简历有向图对象P [d,p]=graphshortestpath(P,n1,n2) 求解最短路径,n1和n2为起始和终止节点序号,d为最短距离,p为最短路径上节点序号构成的序列 view()函数可以显示有向图 81:无向图的路径寻优

无向图中若不存在环路,则可以先按照有向图的方式构造关联矩阵R,则无向图的关联矩阵R1=R+R的转置计算出来。

若某些边事有向的,则可以手工修改该矩阵,假如从节点i到节点j的边是有向的,从i到j,则可设置成R1(j,i)=0

82:绝对坐标节点的最有路径寻优

若各个节点以绝对坐标(x,y)给出,且给出节点间的连接关系,则边权值可由两点间的距离计算处理

pdf表示求取概率密度函数,cdf表示累积分布函数,inv表示逆分布函数,rnd表示随机数生成函数

83:Poisson分布

y=poisspdf(x,t) F=poisscdf(x,t) x=poissinv(F,t)

x为选定的一组横坐标向量,由x=[0:k]生成,y为x各点处的概率密度函数的值,F为x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值