前言
我们之所以感觉高三或高四很辛苦,除过高中最后一学年是冲刺阶段,任务量大,知识难度大,知识使用灵活,综合程度高,考查频次高,学习强度大这些原因之外,还有一个很重要的原因,就是我们不少学生一直在低效率层次上运转,但愿下面的题组和知识的总结方法,或许能给你一些学习方法和数学思维上启迪。
以 限定条件下的均值不等式使用
为案例作以说明,这本来也是重点和难点;
案例说明
模型详析:均值不等式中有一类常考题型,比如求限定条件下的最值问题,对应的解决方法是:常数代换或乘常数再除常数。
<lt></lt>:已知 2 m + 3 n = 2 , m > 0 , n > 0 2m+3n=2,m>0,n>0 2m+3n=2,m>0,n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。 分析如下:
4 m + 1 n = 1 2 ⋅ ( 2 m + 3 n ) ( 4 m + 1 n ) \cfrac{4}{m}+\cfrac{1}{n}=\cfrac{1}{2}\cdot (2m+3n)(\cfrac{4}{m}+\cfrac{1}{n}) m4+n1=21⋅(2m+3n)(m4+n1)
= 1 2 ⋅ ( 8 + 3 + 2 m n + 12 n m ) =\cfrac{1}{2}\cdot (8+3+\cfrac{2m}{n}+\cfrac{12n}{m}) =21⋅(8+3+n2m+m12n)
≥ 1 2 ( 11 + 4 6 ) \ge \cfrac{1}{2}(11+4\sqrt{6}) ≥21(11+46)
当且仅当 { 2 m + 3 n = 2 2 m n = 12 n m \left\{\begin{array}{l}{2m+3n=2}\\{\cfrac{2m}{n}=\cfrac{12n}{m}}\end{array}\right. ⎩ ⎨ ⎧2m+3n=2n2m=m12n时取到等号;
思维模式:
\begin{gather*} &2m+3n=2 \\ &\cdots \\&\cdots\end{gather*} } → 或间接推出 直接给出 2 m + 3 n = 2 → 乘常数除以常数 其他式子 \Bigg\}\xrightarrow[或间接推出]{直接给出} 2m+3n=2\xrightarrow[乘常数除以常数]{其他式子} }直接给出或间接推出2m+3n=2其他式子乘常数除以常数 { 4 m + 1 n 1 m + 4 n ⋯ \begin{cases} &\cfrac{4}{m}+\cfrac{1}{n} \\ &\cfrac{1}{m}+\cfrac{4}{n} \\ &\cdots\end{cases} ⎩ ⎨ ⎧m4+n1m1+n4⋯
掌握了上述的模型,就能解决这一类问题了吗,回答是否定的,因为限定条件完全可能会以其他形式给出来。请通过下列的例子自行体会、把握。
✍️ <font color=red>限定条件以简单变形形式给出</font>
<lt></lt>已知 m > 0 , n > 0 , m + 3 2 n = 1 m>0,n>0,m+\cfrac{3}{2}n=1 m>0,n>0,m+23n=1,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。
又或已知 m > 0 , n > 0 , 1 n + 3 n 2 m = 1 m n m>0,n>0,\cfrac{1}{n}+\cfrac{3n}{2m}=\cfrac{1}{mn} m>0,n>0,n1+2m3n=mn1,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。
详解:此时只需要将已知条件转化为 2 m + 3 n = 2 2m+3n=2 2m+3n=2,接下来,就转化为上述题目了,你就应该会了。
解后反思:注意数学表达式的等价变形。
✍️ <font color=red>限定条件以直线的形式给出</font>
<lt></lt>已知点 P ( m , n ) P(m,n) P(m,n)在直线 2 x + 3 y = 2 , x > 0 , y > 0 2x+3y=2,x>0,y>0 2x+3y=2,x>0,y>0上,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。
详解:则有 2 m + 3 n = 2 2m+3n=2 2m+3n=2,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值,又转化为上述问题了。
解后反思:注意其他数学知识的准确应用。
<font color=red>限定条件以线性规划形式给出</font>
<lt></lt>如已知 x , y x,y x,y满足约束条件 { x + y ≥ 3 x − y ≥ − 1 2 x − y ≤ 3 \begin{cases} &x+y\ge 3 \\ &x-y\ge -1 \\ &2x-y\leq 3 \end{cases} ⎩ ⎨ ⎧x+y≥3x−y≥−12x−y≤3 ,若目标函数 z = a x + b y ( a > 0 , b > 0 ) z=ax+by(a>0,b>0) z=ax+by(a>0,b>0)的最大值为10,则 5 a + 4 b \cfrac{5}{a}+\cfrac{4}{b} a5+b4的最小值为多少?
详解:做出可行域可知,
<iframe id=“LTTP” width=“80%” οnlοad=‘this.height=document.getElementById(“LTTP”).scrollWidth*0.75+“px”’ frameborder=“0” src=‘ https://www.desmos.com/calculator/wewlrstrq7?embed’ style=“border: 1px solid #ccc”></iframe>
当目标直线经过点 ( 4 , 5 ) (4,5) (4,5)时,函数取得最大值,
即此时题目相当于已知 4 a + 5 b = 10 4a+5b=10 4a+5b=10,求 5 a + 4 b \cfrac{5}{a}+\cfrac{4}{b} a5+b4的最小值,不是又转化为上述问题了吗?
解后反思:注意其他数学知识点的准确表达。
<font color=red>限定条件以极限或定积分的形式给出</font>
<lt></lt>已知 lim x → 1 + f ( x ) = lim x → 1 + x x 2 + 3 x + 1 = m + n , m > 0 , n > 0 \lim\limits_{x\to 1^+} f(x)=\lim\limits_{x\to 1^+}\cfrac{x}{x^2+3x+1}=m+n,m>0,n>0 x→1+limf(x)=x→1+limx2+3x+1x=m+n,m>0,n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。
如已知 ∫ 1 2 x d x = m + n , m > 0 , n > 0 \int_{1}^{2} x\; dx=m+n,m>0,n>0 ∫12xdx=m+n,m>0,n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。
详解:你可能不会极限和定积分的运算,但是肯定能知道,运算到最后的结果必然是 m + n = m+n= m+n=某个确定的值,比如 m + n = 1 5 m+n=\cfrac{1}{5} m+n=51,这样题目就转化为已知 m + n = 1 5 , m > 0 , n > 0 m+n=\cfrac{1}{5},m>0,n>0 m+n=51,m>0,n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值,这不就是上述题目吗?
解后反思:注意其他数学知识点的准确计算和表达。
<font color=red>限定条件以二项式系数的形式给出</font>
<lt></lt>已知 ( x 2 + 1 ) 9 (\cfrac{x}{2}+1)^9 (2x+1)9展开式中,含 x 3 x^3 x3项的系数为 m + n , m > 0 , n > 0 m+n,m>0,n>0 m+n,m>0,n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。
详解: ( x 2 + 1 ) 9 (\cfrac{x}{2}+1)^9 (2x+1)9展开式中通项公式为 T r + 1 = C 9 r ⋅ ( x 2 ) 9 − r ⋅ 1 r = C 9 r ⋅ x 9 − r ⋅ ( 1 2 ) 9 − r ⋅ 1 r T_{r+1}=C_9^r\cdot (\cfrac{x}{2})^{9-r}\cdot 1^r=C_9^r\cdot x^{9-r}\cdot (\cfrac{1}{2})^{9-r}\cdot 1^r Tr+1=C9r⋅(2x)9−r⋅1r=C9r⋅x9−r⋅(21)9−r⋅1r,当 r = 6 r=6 r=6时,含 x 3 x^3 x3项的系数为 C 9 6 ⋅ ( 1 2 ) 9 − 6 = 21 2 C_9^6\cdot (\cfrac{1}{2})^{9-6}=\cfrac{21}{2} C96⋅(21)9−6=221
到此题目转化为已知 m + n = 21 2 , m > 0 , n > 0 m+n=\cfrac{21}{2},m>0,n>0 m+n=221,m>0,n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。这不就是上述题目吗?
解后反思:注意其他数学知识点的准确计算和表达。
<font color=red>限定条件以数列形式给出</font>
<lt></lt>已知正项等比数列 { a n } \{a_n\} {an}满足: a 7 = a 6 + 2 a 5 a_7=a_6+2a_5 a7=a6+2a5,若存在两项 a m , a n a_m,a_n am,an,使得 a m a n = 16 a 1 2 a_ma_n=16a_1^2 aman=16a12,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。
详解:由 a 7 = a 6 + 2 a 5 a_7=a_6+2a_5 a7=a6+2a5,得到 a 5 ⋅ q 2 = a 5 ⋅ q + 2 a 5 a_5\cdot q^2=a_5\cdot q+2a_5 a5⋅q2=a5⋅q+2a5,解得 q = 2 q=2 q=2或 q = − 1 q=-1 q=−1(舍去负值),这样由 a m ⋅ a n = 16 a 1 2 a_m\cdot a_n=16a_1^2 am⋅an=16a12,
得到 ( a 1 ) 2 ⋅ 2 m − 1 ⋅ 2 n − 1 = 16 a 1 2 (a_1)^2\cdot 2^{m-1}\cdot 2^{n-1}=16a_1^2 (a1)2⋅2m−1⋅2n−1=16a12,即 2 m − 1 ⋅ 2 n − 1 = 16 = 2 4 2^{m-1}\cdot 2^{n-1}=16=2^4 2m−1⋅2n−1=16=24
即 m + n = 6 , m > 0 , n > 0 m+n=6,m >0,n >0 m+n=6,m>0,n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值,这样不就好解多了吗?
解后反思:注意其他数学知识点的准确计算和表达。
<font color=red>限定条件以复合函数形式给出</font>
<LT></LT><span class=“tooltip”>已知函数 f ( x ) = ∣ 1 − 1 x ∣ f(x)=|1-\cfrac{1}{x}| f(x)=∣1−x1∣,若 0 < a < b 0<a<b 0<a<b且满足方程 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)<span class=“tooltiptext”>当你完整解完本题目,你会发现,这句话的用意是为了告诉你 1 a \cfrac{1}{a} a1 + + + 1 b \cfrac{1}{b} b1 = = = 2 2 2,从而接下来能利用均值不等式求解求最小值;</span></span>,求 4 a + b 4a+b 4a+b的最小值;
解析:由 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),即 ∣ 1 − 1 a ∣ = ∣ 1 − 1 b ∣ |1-\cfrac{1}{a}|=|1-\cfrac{1}{b}| ∣1−a1∣=∣1−b1∣,结合 f ( x ) f(x) f(x)的图象可知, a < 1 < b a<1<b a<1<b,
故去掉绝对值符号,得到 1 a − 1 = 1 − 1 b \cfrac{1}{a}-1=1-\cfrac{1}{b} a1−1=1−b1,
故得到 1 a + 1 b = 2 \cfrac{1}{a}+\cfrac{1}{b}=2 a1+b1=2,且 0 < a < 1 < b 0<a<1<b 0<a<1<b,
则 4 a + b = 1 2 × 2 × ( 4 a + b ) = 1 2 × ( 1 a + 1 b ) × ( 4 a + b ) 4a+b=\cfrac{1}{2}\times 2 \times(4a+b)=\cfrac{1}{2}\times(\cfrac{1}{a}+\cfrac{1}{b})\times(4a+b) 4a+b=21×2×(4a+b)=21×(a1+b1)×(4a+b)
= 1 2 ( 4 + 1 + b a + 4 a b ) ⩾ 1 2 ( 5 + 2 4 = 9 =\cfrac{1}{2}(4+1+\cfrac{b}{a}+\cfrac{4a}{b})\geqslant \cfrac{1}{2}(5+2\sqrt{4}=9 =21(4+1+ab+b4a)⩾21(5+24=9,
当且仅当 b a = 4 a b \cfrac{b}{a}=\cfrac{4a}{b} ab=b4a 且 1 a + 1 b = 2 \cfrac{1}{a}+\cfrac{1}{b}=2 a1+b1=2 时,
即 a = 3 4 a=\cfrac{3}{4} a=43 且 b = 3 2 b=\cfrac{3}{2} b=23 时取到等号;故 ( 4 a + b ) min = 9 2 (4a+b)_{\min}=\cfrac{9}{2} (4a+b)min=29 .
<font color=red>限定条件以向量形式给出</font>
<lt></lt>【2017宝鸡市三检】设向量 O A → = ( 1 , − 2 ) \overrightarrow{OA}=(1,-2) OA=(1,−2), O B → = ( a , − 1 ) \overrightarrow{OB}=(a,-1) OB=(a,−1), O C → = ( − b , 0 ) \overrightarrow{OC}=(-b,0) OC=(−b,0),其中 O O O为坐标原点, a , b > 0 a,b>0 a,b>0,若 A , B , C A,B,C A,B,C三点共线,则 1 a + 2 b \cfrac{1}{a}+\cfrac{2}{b} a1+b2的最小值为多少?
详解:由三点共线的向量表达方式可知,存在实数 λ \lambda λ,使得 O A → = λ O B → + ( 1 − λ ) O C → \overrightarrow{OA}=\lambda \overrightarrow{OB}+(1-\lambda)\overrightarrow{OC} OA=λOB+(1−λ)OC,
即 ( 1 , − 2 ) = λ ( a , − 1 ) + ( 1 − λ ) ( − b , 0 ) (1,-2)=\lambda(a,-1)+(1-\lambda)(-b,0) (1,−2)=λ(a,−1)+(1−λ)(−b,0),
即 { λ a − ( 1 − λ ) b = 1 − λ = − 2 \begin{cases}\lambda a-(1-\lambda)b=1\\-\lambda=-2\end{cases} {λa−(1−λ)b=1−λ=−2,
即 2 a + b = 1 2a+b=1 2a+b=1,这样题目就转化为已知 2 a + b = 1 , a > 0 , b > 0 2a+b=1,a>0,b>0 2a+b=1,a>0,b>0,求 1 a + 2 b \cfrac{1}{a}+\cfrac{2}{b} a1+b2的最小值,这不就是上述题目吗?
解后反思:注意三点共线的向量表示形式。
<font color=red>限定条件以对数方程的形式给出</font>
<lt></lt>已知 x > 0 x>0 x>0, y > 0 y>0 y>0, l g 2 x + l g 8 y = l g 2 lg2^x+lg8^y=lg2 lg2x+lg8y=lg2,求 1 x + 1 3 y \cfrac{1}{x}+\cfrac{1}{3y} x1+3y1的最小值。
详解:由已知条件可知, l g 2 x + l g 2 3 y = l g 2 lg2^x+lg2^{3y}=lg2 lg2x+lg23y=lg2,即 l g 2 x + 3 y = l g 2 lg2^{x+3y}=lg2 lg2x+3y=lg2,即 x + 3 y = 1 x+3y=1 x+3y=1,到此题目转化为 x + 3 y = 1 , x > 0 , y > 0 x+3y=1,x>0,y>0 x+3y=1,x>0,y>0,求 1 x + 1 3 y \cfrac{1}{x}+\cfrac{1}{3y} x1+3y1,不就容易了吗?
解后反思:注意对数的运算性质和运算法则。
<font color=red>限定条件直线过圆心或直线平分圆的形式给出</font>
<lt></lt>已知直线 a x + b y − 6 = 0 ( a , b > 0 ) ax+by-6=0(a,b>0) ax+by−6=0(a,b>0)过圆 x 2 + y 2 − 2 x − 4 y = 0 x^2+y^2-2x-4y=0 x2+y2−2x−4y=0的圆心(或直线平分此圆),求 4 a + 1 b \cfrac{4}{a}+\cfrac{1}{b} a4+b1的最小值。
详解:圆心即 ( 1 , 2 ) (1,2) (1,2),直线经过圆心,则有 a + 2 b − 6 = 0 a+2b-6=0 a+2b−6=0,即 a + 2 b = 6 a+2b=6 a+2b=6。
到此,题目为 a + 2 b = 6 , a > 0 , b > 0 a+2b=6,a>0,b>0 a+2b=6,a>0,b>0,求 4 a + 1 b \cfrac{4}{a}+\cfrac{1}{b} a4+b1的最小值。可仿模型解决。
解后反思:注意其他数学知识点的准确计算和表达。
<font color=red>限定条件以概率的形式给出</font>
<lt></lt>一个篮球运动员投篮一次得3分的概率为 a a a,得2分的概率为 b b b,不得分的概率为 c c c( a , b , c ∈ ( 0 , 1 ) a,b,c\in (0,1) a,b,c∈(0,1)),已知他投篮一次得分的均值为2,求 2 a + 1 3 b \cfrac{2}{a}+\cfrac{1}{3b} a2+3b1的最小值。
详解:分析:由题目可知投篮一次得分的均值 E X = 3 a + 2 b = 2 ( a > 0 , b > 0 ) EX=3a+2b=2(a>0,b>0) EX=3a+2b=2(a>0,b>0),求 2 a + 1 3 b \cfrac{2}{a}+\cfrac{1}{3b} a2+3b1的最小值。
解后反思:注意其他数学知识点的准确计算和表达。
<font color=red>限定条件以解三角形和三角形的面积形式给出</font>
<lt></lt>已知点M是 Δ A B C \Delta ABC ΔABC内的一点,且 A B → ⋅ A C → = 2 3 \overrightarrow{AB}\cdot \overrightarrow{AC}=2\sqrt{3} AB⋅AC=23, ∠ B A C = π 6 \angle BAC=\cfrac{\pi}{6} ∠BAC=6π,若 Δ M B C , Δ M C A , Δ M A B \Delta MBC,\Delta MCA,\Delta MAB ΔMBC,ΔMCA,ΔMAB的面积分别为 1 2 , x , y \cfrac{1}{2},x,y 21,x,y,求 1 x + 4 y \cfrac{1}{x}+\cfrac{4}{y} x1+y4的最小值。
详解:由 A B → ⋅ A C → = 2 3 \overrightarrow{AB}\cdot \overrightarrow{AC}=2\sqrt{3} AB⋅AC=23, ∠ B A C = π 6 \angle BAC=\cfrac{\pi}{6} ∠BAC=6π,
故有 ∣ A B → ∣ ⋅ ∣ A C → ∣ c o s π 6 = 2 3 |\overrightarrow{AB}|\cdot |\overrightarrow{AC}|cos\cfrac{\pi}{6}=2\sqrt{3} ∣AB∣⋅∣AC∣cos6π=23,得到 b c = 4 bc=4 bc=4,
所以 S Δ A B C = 1 2 b c s i n π 6 = 1 S_{\Delta ABC}=\cfrac{1}{2}bcsin\cfrac{\pi}{6}=1 SΔABC=21bcsin6π=1,
又 Δ M B C , Δ M C A , Δ M A B \Delta MBC,\Delta MCA,\Delta MAB ΔMBC,ΔMCA,ΔMAB的面积分别为 1 2 , x , y \cfrac{1}{2},x,y 21,x,y,
故有 1 2 + x + y = 1 \cfrac{1}{2}+x+y=1 21+x+y=1,即 x + y = 1 2 x+y=\cfrac{1}{2} x+y=21。
到此,题目为已知 x + y = 1 2 , x > 0 , y > 0 x+y=\cfrac{1}{2},x>0,y>0 x+y=21,x>0,y>0,求 1 x + 4 y \cfrac{1}{x}+\cfrac{4}{y} x1+y4的最小值。可仿模型解决。
解后反思:注意向量和三角形面积公式的使用。
<LT></LT>【2024高一数学训练题】在 △ A B C \triangle ABC △ABC 中,角 A A A, B B B, C C C 所对的边为 a a a, b b b, c c c, ∠ A B C = 12 0 ∘ \angle ABC=120^{\circ} ∠ABC=120∘, ∠ A B C \angle ABC ∠ABC 的平分线交 A C AC AC 于点 D D D,且 B D = 2 BD=2 BD=2,则 a + 2 c a+2c a+2c 的最小值为 <span class=“xzkh”>【 \qquad 】</span>
<div class=“XZXX”> A . 6 + 4 2 A.6+4\sqrt{2} A.6+42 B . 12 B.12 B.12 C . 3 + 2 2 C.3+2\sqrt{2} C.3+22 D . 9 D.9 D.9</div>
分析:由 S △ A B C = S △ A B D + S △ D B C S_{\triangle ABC}=S_{\triangle ABD}+S_{\triangle DBC} S△ABC=S△ABD+S△DBC ,即 1 2 a c sin 12 0 ∘ \cfrac{1}{2}ac\sin120^{\circ} 21acsin120∘ = = = 1 2 2 a sin 6 0 ∘ \cfrac{1}{2}2a\sin60^{\circ} 212asin60∘ + + + 1 2 2 c sin 6 0 ∘ \cfrac{1}{2}2c\sin60^{\circ} 212csin60∘,
即 a c = 2 a + 2 c ac=2a+2c ac=2a+2c,即 1 a + 1 c = 1 2 \cfrac{1}{a}+\cfrac{1}{c}=\cfrac{1}{2} a1+c1=21,
然后用乘常数除以常数的思路, a + 2 c = 2 ( a + 2 c ) ( 1 a + 1 c ) a+2c=2(a+2c)(\cfrac{1}{a}+\cfrac{1}{c}) a+2c=2(a+2c)(a1+c1),选 A A A .
<font color=red>限定条件以导数和极值的形式给出</font>
<lt></lt>已知 a > 0 , b > 0 a>0,b>0 a>0,b>0,且函数 f ( x ) = − x 3 + 2 a x 2 + b x + 1 f(x)=-x^3+2ax^2+bx+1 f(x)=−x3+2ax2+bx+1在 x = 1 x=1 x=1处有极值,求 4 a + 1 b \cfrac{4}{a}+\cfrac{1}{b} a4+b1的最小值。
详解: f ′ ( x ) = − 3 x 2 + 4 a x + b f'(x)=-3x^2+4ax+b f′(x)=−3x2+4ax+b, f ′ ( 1 ) = − 3 + 4 a + b = 0 f'(1)=-3+4a+b=0 f′(1)=−3+4a+b=0,到此即相当于已知 4 a + b = 3 , a > 0 , b > 0 4a+b=3,a>0,b>0 4a+b=3,a>0,b>0,求 4 a + 1 b \cfrac{4}{a}+\cfrac{1}{b} a4+b1的最小值。
解后反思:注意导数的运算。
<font color=red>限定条件以正态分布的形式给出</font>
<lt></lt>已知随机变量 X X X服从正态分布 X ∼ N ( 10 , σ 2 ) X \sim N(10,\sigma^2) X∼N(10,σ2), P ( X > 12 ) = m P( X > 12)=m P(X>12)=m , P ( 8 ≤ X ≤ 10 ) = n P(8\leq X \leq 10)=n P(8≤X≤10)=n ,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。
详解:由正态分布图像的对称性可知, m + n = 1 2 m+n=\cfrac{1}{2} m+n=21
到此,题目转化为已知 m + n = 1 2 m+n=\cfrac{1}{2} m+n=21, m > 0 , n > 0 m >0,n >0 m>0,n>0,求$ \cfrac{4}{m}+\cfrac{1}{n}$的最小值。仿模型求解即可。
解后反思:注意正态分布的知识点的应用。
<font color=red>限定条件以函数在点处的切线斜率的形式给出</font>
<lt></lt>已知函数 f ( x ) = a x 2 + b x ( a > 0 , b > 0 ) f(x)=ax^2+bx(a>0,b>0) f(x)=ax2+bx(a>0,b>0)的图像在点 ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线的斜率为2,求 4 a + 1 b \cfrac{4}{a}+\cfrac{1}{b} a4+b1的最小值。
详解:由题目可知, f ′ ( 1 ) = 2 a + b = 2 f'(1)=2a+b=2 f′(1)=2a+b=2,即已知 2 a + b = 2 , a > 0 , b > 0 2a+b=2,a >0,b >0 2a+b=2,a>0,b>0,求 4 a + 1 b \cfrac{4}{a}+\cfrac{1}{b} a4+b1的最小值,仿模型求解。
解后反思:注意导数的几何意义。
<font color=red>限定条件以函数的性质的形式给出</font>
<lt></lt>已知函数 f ( x ) = 2 x − s i n x f(x)=2x-sinx f(x)=2x−sinx,若正实数 a , b a,b a,b满足 f ( a ) + f ( 2 b − 1 ) = 0 f(a)+f(2b-1)=0 f(a)+f(2b−1)=0,求 4 a + 1 b \cfrac{4}{a}+\cfrac{1}{b} a4+b1的最小值。
详解:函数 f ( x ) f(x) f(x)为奇函数, f ′ ( x ) = 2 − c o s x > 0 f'(x)=2-cosx>0 f′(x)=2−cosx>0,故增函数,故 f ( a ) + f ( 2 b − 1 ) = 0 f(a)+f(2b-1)=0 f(a)+f(2b−1)=0,即 f ( a ) = − f ( 2 b − 1 ) = f ( 1 − 2 b ) f(a)=-f(2b-1)=f(1-2b) f(a)=−f(2b−1)=f(1−2b),即转化为 a + 2 b = 1 a+2b=1 a+2b=1,
到此,转化为已知 a + 2 b = 1 a+2b=1 a+2b=1, a > 0 , b > 0 a>0,b>0 a>0,b>0,求 4 a + 1 b \cfrac{4}{a}+\cfrac{1}{b} a4+b1的最小值。
解后反思:注意抽象函数的性质的应用。
<font color=red>限定条件以隐含条件的形式给出</font>
<lt></lt>求 f ( x ) = 1 x + 4 2 − x ( 0 < x < 2 ) f(x)=\cfrac{1}{x}+\cfrac{4}{2-x}(0< x <2) f(x)=x1+2−x4(0<x<2)的最小值。
详解:注意到隐含条件 x + ( 2 − x ) = 2 , x > 0 , 2 − x > 0 x+(2-x)=2,x>0,2-x>0 x+(2−x)=2,x>0,2−x>0,则容易看到题目其实为已知 x + ( 2 − x ) = 2 x+(2-x)=2 x+(2−x)=2, x > 0 , 2 − x > 0 x >0,2-x >0 x>0,2−x>0,求 f ( x ) = 1 x + 4 2 − x ( 0 < x < 2 ) f(x)=\cfrac{1}{x}+\cfrac{4}{2-x}(0<x<2) f(x)=x1+2−x4(0<x<2)的最小值。
f ( x ) = 1 x + 4 2 − x f(x)=\cfrac{1}{x}+\cfrac{4}{2-x} f(x)=x1+2−x4
= 1 2 ( 1 x + 4 2 − x ) × 2 =\cfrac{1}{2}(\cfrac{1}{x}+\cfrac{4}{2-x})\times 2 =21(x1+2−x4)×2
= 1 2 ( 1 x + 4 2 − x ) [ x + ( 2 − x ) ] =\cfrac{1}{2}(\cfrac{1}{x}+\cfrac{4}{2-x})[x+(2-x)] =21(x1+2−x4)[x+(2−x)]
= 1 2 ( 1 + 4 + 2 − x x + 4 x 2 − x ) =\cfrac{1}{2}(1+4+\cfrac{2-x}{x}+\cfrac{4x}{2-x}) =21(1+4+x2−x+2−x4x),
≥ 1 2 ( 5 + 2 4 ) = 9 2 \ge \cfrac{1}{2}(5+2\sqrt{4})=\cfrac{9}{2} ≥21(5+24)=29,
当且仅当 2 − x x = 4 x 2 − x \cfrac{2-x}{x}=\cfrac{4x}{2-x} x2−x=2−x4x且 0 < x < 2 0< x <2 0<x<2时,
即 x = 2 3 x=\cfrac{2}{3} x=32时取得等号。
故 f ( x ) f(x) f(x)的最小值为 9 2 \cfrac{9}{2} 29。
【引申】求 f ( x ) = x + 1 x + 6 − x 2 − x ( 0 < x < 2 ) f(x)=\cfrac{x+1}{x}+\cfrac{6-x}{2-x}(0< x < 2) f(x)=xx+1+2−x6−x(0<x<2)的最小值。
分析: f ( x ) = 1 + 1 x + 4 2 − x + 1 f(x)=1+\cfrac{1}{x}+\cfrac{4}{2-x}+1 f(x)=1+x1+2−x4+1
= 2 + 1 x + 4 2 − x =2+\cfrac{1}{x}+\cfrac{4}{2-x} =2+x1+2−x4
解后反思:此处相当于 x = a , 2 − x = b , a + b = 2 x=a,2-x=b,a+b=2\;\; x=a,2−x=b,a+b=2,求 f ( x ) = 1 x + 4 2 − x = 1 a + 4 b f(x)=\cfrac{1}{x}+\cfrac{4}{2-x}=\cfrac{1}{a}+\cfrac{4}{b} f(x)=x1+2−x4=a1+b4
<font color=red>限定条件不直接给出+拼凑项</font>
<lt></lt>已知函数 f ( x ) = 2 x − s i n x f(x)=2x-sinx f(x)=2x−sinx,若正实数 a , b a,b a,b满足 f ( a ) + f ( 2 b − 1 ) = 0 f(a)+f(2b-1)=0 f(a)+f(2b−1)=0,求 4 a + 1 + 1 2 b + 1 \cfrac{4}{a+1}+\cfrac{1}{2b+1} a+14+2b+11的最小值。
详解:函数 f ( x ) f(x) f(x)为奇函数,增函数,故 f ( a ) + f ( 2 b − 1 ) = 0 f(a)+f(2b-1)=0 f(a)+f(2b−1)=0,即 f ( a ) = − f ( 2 b − 1 ) = f ( 1 − 2 b ) f(a)=-f(2b-1)=f(1-2b) f(a)=−f(2b−1)=f(1−2b),即转化为 a + 2 b = 1 a+2b=1 a+2b=1,到此,转化为已知 a + 2 b = 1 a+2b=1 a+2b=1, a > 0 , b > 0 a>0,b>0 a>0,b>0,再变形为 ( a + 1 ) + ( 2 b + 1 ) = 3 (a+1)+(2b+1)=3 (a+1)+(2b+1)=3,即最后转化为已知 ( a + 1 ) + ( 2 b + 1 ) = 3 (a+1)+(2b+1)=3 (a+1)+(2b+1)=3, a > 0 , b > 0 a>0,b>0 a>0,b>0,求 4 a + 1 + 1 2 b + 1 \cfrac{4}{a+1}+\cfrac{1}{2b+1} a+14+2b+11的最小值。
解后反思:本题目和例16相比较,仅仅多了一步拼凑系数的变形。
<font color=red>利用点线距的形式给出</font>
<lt></lt>【2017浙江嘉兴一中模拟】已知直线 2 a x + b y = 1 \sqrt{2}ax+by=1 2ax+by=1(其中 a b ≠ 0 ab\neq0 ab=0)与圆 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1相交于 A 、 B A、B A、B两点, O O O为坐标原点,且 ∠ A O B = 12 0 ∘ \angle AOB=120^{\circ} ∠AOB=120∘,则 1 a 2 + 2 b 2 \cfrac{1}{a^2}+\cfrac{2}{b^2} a21+b22的最小值为_____________.
详解:分析:自行做出示意图,结合题目条件,我们可以知道圆心到直线的点线距为 d = 1 2 d=\cfrac{1}{2} d=21,
即 d = 1 2 = ∣ 2 a × 0 + b × 0 − 1 ∣ 2 a 2 + b 2 d=\cfrac{1}{2}=\cfrac{|\sqrt{2}a\times 0+b\times0-1|}{\sqrt{2a^2+b^2}} d=21=2a2+b2∣2a×0+b×0−1∣,即 2 a 2 + b 2 = 4 2a^2+b^2=4 2a2+b2=4,
到此题目转化为已知 2 a 2 + b 2 = 4 2a^2+b^2=4 2a2+b2=4,求 1 a 2 + 2 b 2 \cfrac{1}{a^2}+\cfrac{2}{b^2} a21+b22的最小值问题。
利用乘常数除常数的方法解决即可。
新题补充
<LT></LT>【2019届高三理科数学第三轮模拟训练题】已知函数 f ( x ) = l n ( x + 1 ) + x 2 − a x f(x)=ln(x+1)+x^2-ax f(x)=ln(x+1)+x2−ax,其中 0 < a < 1 0<a<1 0<a<1,若曲线 y = f ( x ) y=f(x) y=f(x)在 ( 0 , f ( 0 ) ) (0,f(0)) (0,f(0))处的切线为 y = b x y=bx y=bx,则 2 a + 1 2 b \cfrac{2}{a}+\cfrac{1}{2b} a2+2b1的最小值为【】
<div class=“XZXX” > A . 5 A.5 A.5 B . 9 2 B.\cfrac{9}{2} B.29 C . 4 C.4 C.4 D . 7 2 D.\cfrac{7}{2} D.27</div>
分析:由题目可知, f ′ ( x ) = 1 x + 1 + 2 x − a f'(x)=\cfrac{1}{x+1}+2x-a f′(x)=x+11+2x−a,又 f ′ ( 0 ) = b f'(0)=b f′(0)=b,即 1 − a = b 1-a=b 1−a=b,则有 a + b = 1 a+b=1 a+b=1,
则 2 a + 1 2 b = ( a + b ) ( 2 a + 1 2 b ) = 2 + 1 2 + 2 b a + a 2 b ⩾ 5 2 + 2 = 9 2 \cfrac{2}{a}+\cfrac{1}{2b}=(a+b)(\cfrac{2}{a}+\cfrac{1}{2b})=2+\cfrac{1}{2}+\cfrac{2b}{a}+\cfrac{a}{2b}\geqslant \cfrac{5}{2}+2=\cfrac{9}{2} a2+2b1=(a+b)(a2+2b1)=2+21+a2b+2ba⩾25+2=29,
当且仅当 a = 2 b a=2b a=2b时取到等号,即 a = 2 3 a=\cfrac{2}{3} a=32, b = 1 3 b=\cfrac{1}{3} b=31时取得等号。故选 B B B。
<LT></LT>【2019届高三理科数学三轮模拟试题】设 O O O为坐标原点,第一象限内的点 M ( x , y ) M(x,y) M(x,y)的坐标满足约束条件 { 2 x − y − 6 ⩽ 0 x − y + 2 ⩾ 0 \left\{\begin{array}{l}{2x-y-6\leqslant 0}\\{x-y+2\geqslant 0}\end{array}\right. {2x−y−6⩽0x−y+2⩾0,若 z = a x + b y ( a > 0 , b > 0 ) z=ax+by(a>0,b>0) z=ax+by(a>0,b>0)的最大值为 80 80 80,则 1 a + 1 b \cfrac{1}{a}+\cfrac{1}{b} a1+b1的最小值为_________。
分析:相当于已知 4 a + 5 b = 40 4a+5b=40 4a+5b=40,求 1 a + 1 b \cfrac{1}{a}+\cfrac{1}{b} a1+b1的最小值,提示: 9 40 + 5 10 \cfrac{9}{40}+\cfrac{\sqrt{5}}{10} 409+105。
<LT></LT>【2019届高三理科数学三轮模拟试题】已知函数 f ( x ) = ∣ 2 x − 4 ∣ + ∣ x − 3 ∣ f(x)=|2x-4|+|x-3| f(x)=∣2x−4∣+∣x−3∣,
(1)求不等式 f ( x ) < 8 f(x)<8 f(x)<8的解集;
提示:分区间讨论法,转化为分段函数不等式求解,解集 ( − 3 , 1 ) (-3,1) (−3,1)。
(2)若 a > 0 a>0 a>0, b > 0 b>0 b>0,且方程 f ( x ) = 3 a + 2 b f(x)=3a+2b f(x)=3a+2b有且仅有一个实数根,求 9 2 a + b + 4 a + b \cfrac{9}{2a+b}+\cfrac{4}{a+b} 2a+b9+a+b4的最小值;
分析:由(1)可知, f ( x ) = { − 3 x − 1 , x ⩽ − 2 x + 7 , − 2 < x < 3 3 x + 1 , x ⩾ 3 f(x)=\left\{\begin{array}{l}{-3x-1,x\leqslant -2}\\{x+7,-2<x<3}\\{3x+1,x\geqslant 3}\end{array}\right. f(x)=⎩ ⎨ ⎧−3x−1,x⩽−2x+7,−2<x<33x+1,x⩾3
故函数 f ( x ) f(x) f(x)在 ( − ∞ , − 2 ) (-\infty,-2) (−∞,−2)上单调递减,在 [ − 2 , + ∞ ) [-2,+\infty) [−2,+∞)上单调递增,
由于方程 f ( x ) = 3 a + 2 b f(x)=3a+2b f(x)=3a+2b有且仅有一个实数根,故可知 3 a + 2 b = f ( − 2 ) = 5 3a+2b=f(-2)=5 3a+2b=f(−2)=5,
[备注:此时 3 a + 2 b 3a+2b 3a+2b理解为一个整体,比如 3 a + 2 b = m 3a+2b=m 3a+2b=m,即方程 f ( x ) = m f(x)=m f(x)=m有且仅有一个根,即函数 y = f ( x ) y=f(x) y=f(x)与 y = m y=m y=m仅有一个交点。]
即 ( 2 a + b ) + ( a + b ) = 5 (2a+b)+(a+b)=5 (2a+b)+(a+b)=5,且 a > 0 a>0 a>0, b > 0 b>0 b>0,求 9 2 a + b + 4 a + b \cfrac{9}{2a+b}+\cfrac{4}{a+b} 2a+b9+a+b4的最小值;
9 2 a + b + 4 a + b = 1 5 ( 9 2 a + b + 4 a + b ) × 5 \cfrac{9}{2a+b}+\cfrac{4}{a+b}=\cfrac{1}{5}(\cfrac{9}{2a+b}+\cfrac{4}{a+b})\times 5 2a+b9+a+b4=51(2a+b9+a+b4)×5 1 5 ( 9 2 a + b + 4 a + b ) [ ( 2 a + b ) + ( a + b ) ] \cfrac{1}{5}(\cfrac{9}{2a+b}+\cfrac{4}{a+b})[(2a+b)+(a+b)] 51(2a+b9+a+b4)[(2a+b)+(a+b)]
= 1 5 ( 9 + 4 + 9 ( a + b ) 2 a + b + 4 ( 2 a + b ) a + b ) ⩾ 13 5 + 1 5 × 2 9 ( a + b ) 2 a + b × 4 ( 2 a + b ) a + b =\cfrac{1}{5}(9+4+\cfrac{9(a+b)}{2a+b}+\cfrac{4(2a+b)}{a+b})\geqslant \cfrac{13}{5}+\cfrac{1}{5}\times 2\sqrt{\frac{9(a+b)}{2a+b}\times \frac{4(2a+b)}{a+b}} =51(9+4+2a+b9(a+b)+a+b4(2a+b))⩾513+51×22a+b9(a+b)×a+b4(2a+b) = 13 5 + 12 5 = 5 =\cfrac{13}{5}+\cfrac{12}{5}=5 =513+512=5
当且仅当 9 ( a + b ) 2 a + b = 4 ( 2 a + b ) a + b \cfrac{9(a+b)}{2a+b}=\cfrac{4(2a+b)}{a+b} 2a+b9(a+b)=a+b4(2a+b),即 a = b = 1 a=b=1 a=b=1时取等号。
故 9 2 a + b + 4 a + b \cfrac{9}{2a+b}+\cfrac{4}{a+b} 2a+b9+a+b4的最小值为 5 5 5.
<LT></LT>【2020届高三数学试题】已知函数 f ( x ) = l o g a ( x + 3 ) − 1 ( a > 0 , a ≠ 1 ) f(x)=log_a(x+3)-1(a>0,a\neq 1) f(x)=loga(x+3)−1(a>0,a=1)的图像恒过定点 A A A,若点 A A A在直线 m x + n y + 4 = 0 mx+ny+4=0 mx+ny+4=0上,其中 m n > 0 mn>0 mn>0,则 1 m + 1 + 2 n \cfrac{1}{m+1}+\cfrac{2}{n} m+11+n2的最小值为______________。
分析:点 A ( − 2 , − 1 ) A(-2,-1) A(−2,−1)满足直线方程,故得到 2 m + n = 4 2m+n=4 2m+n=4,即 2 ( m + 1 ) + n = 6 2(m+1)+n=6 2(m+1)+n=6,
故 1 m + 1 + 2 n = 1 6 × [ 2 ( m + 1 ) + n ] ( 1 m + 1 + 2 n ) = ⋯ ⩾ 4 3 \cfrac{1}{m+1}+\cfrac{2}{n}=\cfrac{1}{6}\times [2(m+1)+n](\cfrac{1}{m+1}+\cfrac{2}{n})=\cdots \geqslant \cfrac{4}{3} m+11+n2=61×[2(m+1)+n](m+11+n2)=⋯⩾34,
然后验证等即可,故所求的最小值为 4 3 \cfrac{4}{3} 34。
解后反思:总结了以上的类型后,够不够用呢?
【模型1】:已知 2 m + 3 n = 2 , m > 0 , n > 0 2m+3n=2,m>0,n>0 2m+3n=2,m>0,n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。(给定条件是整式,求分式的最值,常数代换,乘常数再除常数,部分使用均值不等式)
分析如下: 4 m + 1 n = 1 2 ⋅ ( 2 m + 3 n ) ( 4 m + 1 n ) = 1 2 ⋅ ( 8 + 3 + 2 m n + 12 n m ) = ⋯ \cfrac{4}{m}+\cfrac{1}{n}=\cfrac{1}{2}\cdot (2m+3n)(\cfrac{4}{m}+\cfrac{1}{n})=\cfrac{1}{2}\cdot (8+3+\cfrac{2m}{n}+\cfrac{12n}{m})=\cdots m4+n1=21⋅(2m+3n)(m4+n1)=21⋅(8+3+n2m+m12n)=⋯
【模型2】:已知 4 m + 1 n = 2 , m > 0 , n > 0 \cfrac{4}{m}+\cfrac{1}{n}=2,m>0,n>0 m4+n1=2,m>0,n>0,求 2 m + 3 n 2m+3n 2m+3n的最小值。(给定条件是分式,求整式的最值,常数代换,乘常数再除常数,部分使用均值不等式)
【对照1】:已知 1 a + 2 b = 1 , a > 0 , b > 0 \cfrac{1}{a}+\cfrac{2}{b}=1,a>0,b>0 a1+b2=1,a>0,b>0,求 2 a − 1 + 1 b − 2 \cfrac{2}{a-1}+\cfrac{1}{b-2} a−12+b−21的最小值。(给定条件是分式,求分式的最值,变量集中,再使用均值不等式)
【对照2】:已知 2 a + b = 1 , a > 0 , b > 0 2a+b=1,a>0,b>0 2a+b=1,a>0,b>0,求 a 2 + 2 b 2 a^2+2b^2 a2+2b2的最小值。(给定条件是整式,求整式的最值,变量集中,用函数求解最值)
看完这些内容,你难道不觉得我们很需要好好的改造我们的学习方法吗,比如说留意限定条件的各种可能的给出方式;