同济大学课程考核试卷(B卷)
2009—2010学年第二学期
课名:线性代数B 考试考查:考试
(24分) 填空与选择题,其中选择题均为单选题.
1、 设三阶矩阵,则的行列式展开式中的系数是 4 .
解:直接用沙路法求行列式,或者分析矩阵的行列式,只有主对角线上乘出来的才会产生,所以不难看出的系数应该是-1+2+3=4
2、 设为3阶方阵,行列式,则的伴随矩阵的行列式 4 .
解:由可知的三个特征值分别为-1,1,-2.而的特征值就应该是,由特征值之积等于对应行列式的值可知,为2,
3、 设3阶方阵与对角阵相似,已知,则= .
解:因为与对角阵相似,所以他们的特征值一定相同,而特征值之积等于行列式的值,对求行列式,令其等于,因为,可得
4、 设向量与向量正交,那么 -23 .
解:两向量正交,那么一定有,于是
5、 设为3阶方阵,,且的各行元素之和为0,则线性方程组的通解为 .
解:的各行元素之和为0,所以一定有,又因为,所以的基础解系只有一个向量,所以可得的通解为。
6、 设矩阵可对角化,则= 3 .
解:请参考第七套的6.
7、 设为有限维向量空间,上的线性变换在的两组不同基下的矩阵分别为和,则下面说法不正确的是 D .
(A) 可经过有限次初等变换变为. (B) 和有相同的行列式.
(C) 和有相同的特征值. (D) 与是合同的.
解:线性变换在的两组不同基下的矩阵分别为和,则根据相似矩阵的定义,一定相似于(这一章比较重要的定义,上课的时候老师讲过一次)。ABC都是相似矩阵的性质,而合同则不一定相似,特别的对于实对称阵的矩阵,合同是相似的必要条件。(具体的一些性质我会单独发一章解释)
8、 设为矩阵,已知,矩阵,则 B .
(A) 1. (B) 2. (C) 3. (D) 4.
解: ,所以,det表示行列式(普及符号)
二、(10分)计算行列式的值.
解:方法很多,化成三角型,按行,列展开,或者把每列都加到第一列,提取公因式。最终得到答案为384
三、(12分) 设 其中 求矩阵.
解:参考第七套第三大题(这些老师能不能出点不一样的东西- -)
四、(16分) 已知与分别是的两组基, 求从到的过渡矩阵, 并分别求向量在基下的坐标和在基下的坐标.
解:(1)由过度矩阵的定义有,所以
,.
(2) ,然后求出自然基于,的过渡矩阵,最后利用坐标变换公式。可得到他们对应的坐标
(上面说的是常规做法,还有一种做法,,将其化成行最简型,所以它在的坐标为,同理,它在下的坐标为)
五、(18分) 设有二次型,求一正交变换,把二次型化为标准形,并求出该二次型的标准形和规范形.
解:该二次型的矩阵形式为,求出它对应的特征值0,0,9.当特征值为0时,对应的特征向量为,当特征值为9时,对应的特征向量为,对特征值为0的特征向量使用施密特正交化,有p1=,p2=,p3=,单位化有
P=(,,)
六、(20分) 设,为向量空间的两个线性变换,其中,. 定义.记为的自然基.
(1) 证明:为向量空间的线性变换.
(2) 证明:仍为向量空间的基.
(3) 求线性变换在的自然基及基下的矩阵.
解:(1)首先证明非空,很明显非空
又因为对于矩阵的基本运算,自然满足线性空间八条性质,于是,假设对于任意的,有,
,所以为向量空间的线性变换.
(2)因为是向量空间的基,而,因为可逆,所以线性无关,而且与等价, 所以也是向量空间的基
(3)
所以
,, ,所以对应的矩阵是,同理,在下的矩阵,, ,,所以对应矩阵为