python gdal 重采样_Python空间数据处理之GDAL读写遥感图像

GDAL是空间数据处理的开源包,支持多种数据格式的读写。遥感图像是一种带大地坐标的栅格数据,遥感图像的栅格模型包含以下两部分的内容:

栅格矩阵:由正方形或者矩形栅格点组成,每个栅格点所对应的数值为该点的像元值,在遥感图像中用于表示地物属性值;遥感图像有单波段与多波段,波段表示地物属性的种类,每个波段表示地物一种属性。

大地坐标:空间数据参考表示地图的投影信息;仿射矩阵能将行列坐标映射到面坐标上。

GDAL读写遥感数据的代码:

from osgeo import gdal

import os

class GRID:

#读图像文件

def read_img(self,filename):

dataset=gdal.Open(filename) #打开文件

im_width = dataset.RasterXSize #栅格矩阵的列数

im_height = dataset.RasterYSize #栅格矩阵的行数

im_geotrans = dataset.GetGeoTransform() #仿射矩阵

im_proj = dataset.GetProjection() #地图投影信息

im_data = dataset.ReadAsArray(0,0,im_width,im_height) #将数据写成数组,对应栅格矩阵

del dataset

return im_proj,im_geotrans,im_data

#写文件,以写成tif为例

def write_img(self,filename,im_proj,im_geotrans,im_data):

#gdal数据类型包括

#gdal.GDT_Byte,

#gdal .GDT_UInt16, gdal.GDT_Int16, gdal.GDT_UInt32, gdal.GDT_Int32,

#gdal.GDT_Float32, gdal.GDT_Float64

#判断栅格数据的数据类型

if 'int8' in im_data.dtype.name:

datatype = gdal.GDT_Byte

elif 'int16' in im_data.dtype.name:

datatype = gdal.GDT_UInt16

else:

datatype = gdal.GDT_Float32

#判读数组维数

if len(im_data.shape) == 3:

im_bands, im_height, im_width = im_data.shape

else:

im_bands, (im_height, im_width) = 1,im_data.shape

#创建文件

driver = gdal.GetDriverByName("GTiff") #数据类型必须有,因为要计算需要多大内存空间

dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)

dataset.SetGeoTransform(im_geotrans) #写入仿射变换参数

dataset.SetProjection(im_proj) #写入投影

if im_bands == 1:

dataset.GetRasterBand(1).WriteArray(im_data) #写入数组数据

else:

for i in range(im_bands):

dataset.GetRasterBand(i+1).WriteArray(im_data[i])

del dataset

if __name__ == "__main__":

os.chdir(r'D:\Python_Practice') #切换路径到待处理图像所在文件夹

run = GRID()

proj,geotrans,data = run.read_img('LC81230402013164LGN00.tif') #读数据

print proj

print geotrans

print data

print data.shape

run.write_img('LC81230402013164LGN00_Rewrite.tif',proj,geotrans,data) #写数据

在GDAL遥感影像读写的基础上,我们可以进行遥感图像的各种公式计算和统计分析。

例如我们所熟知的计算NDVI(归一化植被指数),只要在以上代码倒数第二行中插入代码:

import numpy as np

data = data.astype(np.float)

ndvi = (data[3]-data[2])/(data[3]+data[2]) #3为近红外波段;2为红波段

run.write_img('LC81230402013164LGN00_ndvi.tif',proj,geotrans,ndvi) #写为ndvi图像

当然,这是理想的NDVI,实际处理NDVI还会遇到一些其他要处理的问题。例如NDVI值应该在区间[-1,1]内,但实际中会出现大于1或小于-1的情况,或者某些像点是坏点,出现空值nan,需要进一步的配套处理。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持聚米学院。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页