淮阴工学院计算机期末占60,淮阴工学院数据结构期末样卷.doc

这是一份关于数据结构的大学课程考试试卷,包含填空题和选择题,涉及数据存储结构、时间复杂度分析、栈、线性表、排序算法、二叉树等核心概念。试卷要求闭卷完成,考试时间为100分钟,重点考察学生对数据结构基本概念、操作和复杂度分析的理解与应用。

文档介绍:

专业: 计算机各专业

课程名称:数据结构

学分:3.5

试卷编号(A)

课程编号: 1311050

考试方式: 闭卷

考试时间: 100 分钟

拟卷人(签字):

拟卷日期:2012.12.26

审核人(签字):

得分统计表:

题号

总分

得分

得分

阅卷人

一、填空题:(每空1分,共10分)

1. 数据的存储结构种类包括。

2. 分析以下部分代码的时间复杂度用大O表示法为。

int i=1; s=0;

while(i<=n)

{ s+=i;

i=i*2;

}

3. 栈是一种的特殊的线性表。

4. 线性表的顺序存储结构是一种存取方式。

5. 用Dijkstra算法求某一顶点到其余各顶点间的最短路径是按路径长度的次序来得到最短路径的。

6. 设一棵完全二叉树有100个结点,则共有个叶子结点。

7. 将一个长度为50的顺序表的第30个元素删除时,需前移个元素。

8. 设数组a[0…8, 0…9]的起始地址为1000,每个元素占2个存储单元,若以行序为主序顺序存储,则元素a[4,6]的存储地址为。

9. 排序方法的稳定性是指。

10.对有序顺序表(3,8,10,25,29,45,55,77,85,99)采用折半查找,若查找表中元素10,它将依次与表中元素比较大小。

得分

阅卷人

二、选择题:(每题1分,共20分)

1. 数据结构是一门研究非数值计算的程序设计问题中计算机操作对象以及它们之间的 a 和运算的学科。

A. 关系 B. 算法

C. 运算 D. 数据

2. 算法分析的目的是。

A. 找出数据结构的合理性 B. 研究算法中的输入和输出的关系

C. 分析算法的效率以求改进 D. 分析算法的易懂性和文档性

3. 线性表的顺序存储结构是一种结构。

A.随机存取 B.顺序存取

C.索引存取 D.HASH存取

4. 顺序表和链表均适用于查找。

A.随机 B.二分法

C.顺序,也能二分法 D.顺序

5. 在一个有向图中,所有顶点的入度之和等于边的条数的倍。

A.1/2 B. l C. 2 D.4

6. 一组记录的关键字为{18,1,3,8,9,29},则利用堆排序的方法建立的初始堆(大顶堆)为。

A.29,18,9,3,8,1 B.29,9,18,8,1,3

C.29,9,18,8,3,1 D.29,18,9,8,3,1

7. 若在线性表中采用折半查找法查找元素,该线性表应该。

A.元素按值有序 B.元素按值有序,且采用链式存储结构

C.采用顺序存储结构 D.元素按值有序,且采用顺序存储结构

8. 二叉树是非线性数据结构,所以。

A. 它不能用顺序存储结构存储; B. 顺序存储结构和链式存储结构都能存储;

C. 它不能用链式存储结构存储; D. 顺序存储结构和链式存储结构都不能使用

9. 下述几种排序方法中,平均性能最差的是

A. 希尔排序 B. 快速排序 C. 归并排序 D. 简单选择排序

10. 在进行顺序栈入栈运算时,应先判别栈是否。

A. 空 B. 满 C. 上溢 D. 下溢

11.一个队列的入队序列是a,b,c,d,则队列的输出序列是。

A.d,c,b,a

内容来自淘豆网www.taodocs.com转载请标明出处.

内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
内容概要:本文围绕无槽永磁电机的磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何形状下可能引入显著误差,为此提出一种更为精确的解析解法,并通过Matlab代码实现验证。该方法旨在提高无槽永磁电机磁场计算的准确性,适用于需要高精度建模的研究与工程应用场景。文中还提及多个相关科研方向和技术实现,涵盖无人机仿真控制、电力系统优化、路径规划、新能源系统调度、负荷与可再生能源预测等多个前沿领域,均配有Matlab或Python代码实现支持。; 适合人群:具备一定电机理论基础和编程能力,从事电气工程、自动化、【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)新能源系统、智能控制等领域研究的科研人员及研究生;熟悉Matlab/Simulink或Python的开发人员。; 使用场景及目标:①改进无槽永磁电机磁场计算精度,替代存在误差的RFF方法;②为电机设计、控制系统仿真、高性能驱动开发提供可靠模型基础;③拓展至多物理场耦合分析与优化设计。; 阅读建议:建议结合提供的Matlab代码深入理解解析解的推导过程,对比RFF与新方法在不同几何参数下的误差表现,强化理论与实践结合;同时可参考文中列出的其他研究主题及相关代码资源,拓展科研思路与技术实现路径。
内容概要:本文围绕“并_离网风光互补制氢合成氨系统”的容量配置与调度优化问题展开研究,基于Cplex求解器,利用Matlab代码实现对系统多变量、多约束条件下的优化建模与仿真分析。重点探讨风能、光伏、电解水制氢、氢气储存及合成氨工艺之间的能量耦合关系,构建综合能源系统的数学模型,实现对设备容量的最优配置与运行调度的精细化管理。文中提供了完整的Matlab代码实现流程,支持论文结果的复现,并结合实际数据验证模型的有效性与实用性。; 适合人群:具备一定电力系统、能源系统或运筹优化背景的研究生、科研【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析【Cplex求解】(Matlab代码实现)人员及工程技术人员,熟悉Matlab编程与数学建模者更佳;适用于从事新能源综合利用、氢能系统设计等相关领域的研究人员。; 使用场景及目标:①用于复现高水平期刊中关于风光制氢合成氨系统的优化研究成果;②支撑科研工作中对综合能源系统建模与优化求解的学习与开发;③为实际项目中的氢能系统规划提供理论依据和技术工具支持。; 阅读建议:建议读者结合提供的网盘资源下载完整代码与数据,按照文档目录顺序逐步复现模型构建、求解与仿真过程,重点关注目标函数设计、约束条件设定及Cplex调用方法,同时可扩展至Python版本对比学习,深化对优化算法与能源系统耦合机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值