python里随机抽取样本_用Python生成随机样本

本文介绍了如何在Python中生成随机变量和随机向量的样本,包括连续型随机变量(如指数分布)、离散型随机变量(如Bernoulli和Poisson分布)以及随机向量(如二元正态分布)。通过Gibbs采样处理相关随机向量,并探讨了Markov链轨道与极限分布的关系,展示了如何从轨道采样估算平稳分布。
摘要由CSDN通过智能技术生成

如何生成一个随机变量/随机向量的随机样本?连续型随机变量离散型随机变量随机向量Markov 链的一个轨道与其极限分布的关系

如何生成一个随机变量/随机向量的随机样本?

import random, math
from typing import List

import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from mpl_toolkits.mplot3d import Axes3D

连续型随机变量

在已知分布函数的表达式的情况下,有   .  
以指数分布为例  ,
先生成一个  之间的均匀分布随机数  ,再求出  的一个近似根,这个根就是我们要的指数分布随机变量的一个样本。
关于连续的单调函数的求根,二分法足够起到良好的效果。

def bisect_exp(lambda_, r: float) -> float:
    """用二分法求指数分布函数 F(x)=r 的根"""
    F = lambda x: 1 - math.exp(-lambda_ * x) if x >= 0 else 0
    lo, hi = 0, 1
    while F(hi)         hi *= 10
    while (hi - lo) > 1e-5:    # 设置求根误差限
        mid = (lo + hi) / 2
        if F(mid) > r:
            hi = mid
        else:
            lo = mid
    return (lo + hi) / 2
def random_exp(lambda_, size:int =100) -> List[float]:
    """生成长度为size的指数分布随机样本"""
    res = []
    for _ in range(size):
        r = random.random()
        res.append(bisect_exp(lambda_, r))
    return res

以    看看效果,先画出该分布的密度函数  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值