如何生成一个随机变量/随机向量的随机样本?连续型随机变量离散型随机变量随机向量Markov 链的一个轨道与其极限分布的关系
如何生成一个随机变量/随机向量的随机样本?
import random, math
from typing import List
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from mpl_toolkits.mplot3d import Axes3D
连续型随机变量
在已知分布函数的表达式的情况下,有 .
以指数分布为例 ,
先生成一个 之间的均匀分布随机数 ,再求出 的一个近似根,这个根就是我们要的指数分布随机变量的一个样本。
关于连续的单调函数的求根,二分法足够起到良好的效果。
def bisect_exp(lambda_, r: float) -> float:
"""用二分法求指数分布函数 F(x)=r 的根"""
F = lambda x: 1 - math.exp(-lambda_ * x) if x >= 0 else 0
lo, hi = 0, 1
while F(hi) hi *= 10
while (hi - lo) > 1e-5: # 设置求根误差限
mid = (lo + hi) / 2
if F(mid) > r:
hi = mid
else:
lo = mid
return (lo + hi) / 2
def random_exp(lambda_, size:int =100) -> List[float]:
"""生成长度为size的指数分布随机样本"""
res = []
for _ in range(size):
r = random.random()
res.append(bisect_exp(lambda_, r))
return res
以 看看效果,先画出该分布的密度函数