matlab 最小二乘法拟合圆柱,最小二乘法拟合圆——MATLAB和Qt-C++实现

本文介绍了如何利用最小二乘法拟合圆,分别在MATLAB和Qt-C++环境中实现。首先,阐述了理论知识,包括圆的数学模型和最小二乘法原理。接着,提供了MATLAB函数`Circle_Fitting`的详细代码,通过计算一系列数据点的统计量来求解圆的参数。最后,展示了在C++中使用Qt实现相同功能的类`CircleFitting`,该类包含数据结构、拟合方法和结果获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节Jungle尝试用最小二乘法来拟合圆,并用MATLAB和C++实现。

1.理论知识

根据圆心(A,B)和半径R可确定平面上一个圆。平面上圆方程的通式为

f9dbd68e0e8d9b1197575ca6b1967830.png

其中

b1a1ac50b820952c182bfc94c52aae53.png

第一个圆的通式是关于a、b和c的线性方程。利用最小二乘法建立圆拟合的数学模型,求得参数a、b和c的值,再根据第二个方程组求出圆的实际参数A、B和R。

在原始测得的N(N≥3)组数据(xi,yi),(i=1,2,3,…,N)中,根据式通式和最小二乘法原理,需求目标函数

eb0ee89c53f644b602cac469536ebb99.png

的最小值。将F(a,b,c)对a、b、c求偏导,令偏导等于零,得到极值点,得到

33c7b626e492be4602a4d667b6bca71c.png

求解上述方程可得到a、b、c,结合式第二个方程组可得到圆的参数。

2.MATLAB实现

function [ p ] = Circle_Fitting( XZ )

N = size(XZ,1);

x = XZ(:,1);

z = XZ(:,2);

sum_X_Raw = 0;

sum_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值