电路布线java代码_算法--电路布线问题

在一块电路板的上、下两端分别有n个接线柱。根据电路设计,要求用导线将上端接线柱与下端接线柱相连

1a57160b5171c6d67693bb9e161a2148.png

如上图所示,每个节点有且只连有一条线。

在制作电路板时,要求将这n条连线分布到若干绝缘层上。在同一层上的连线不相交。

这个问题是要确定将哪些连线安排在第一层上,使得该层上有尽可能多的连线(不相交)。

为了解决这个问题,我们可以 将问题简化为这样:

设定上接线柱为1,2,3,....,n。

下接线柱是【 1,2,3,....,n】的一个排列 设为f(i),i的值就是上接线柱的数字,

如上图就是这样的模型:

i    1    2     3    4   5   6    7    8     9    10

f(i) 8,7,4,2,5,1,9,3,10,6

它们一一对应。

我们还必须得到这样一个结论:

对于上接线柱i1

f(i1)

因为对于i1f(i2)则它们一定相交(画出图像来看看)

因此,我可以将这个电路布线问题,转化为这样的问题:

已知有一个{1,2,3,...,n}的排列,将其拆分为k个子排列,并且每个子排列都是严格递增的,求子排列的最大元素个数。

例如:排列 8,7,4,2,5,1,9,3,10,6可以拆分成五个子排列{4,5,9,10}{8}{7}{2,3,6}{1} 。

它最大的元素个数是4。

排列 1,2,3,4,5,6,7,8,9,10它是递增的,所以无需拆分,最大元素个数是10。

算法实现:

对于排列8,7,4,2,5,1,9,3,10,6。

先将记录第一个值8,依次向后扫描至大于8的元素。如果发现8的元素,例如9,则我可以产生一个子排列{8,9}(实际上只需要更改元素数量和最大值即可),继续扫描。

产生子排列{8,9,10}。扫描完毕后姑且认为子排列最大元素是3个。

第二次以7向后扫描,只要扫描到比它大的,就将产生一个子排列,继续向后扫描,扫描结束后,得到排列是{7,9,10}。个数是3,与之前的比较。

第三次以4开始扫描,。。。依次下去至扫描结束。

使用递归算法代码简单,算法复杂度为O(N*N)

#include

using namespacestd;#define N 10

int sub[N] = { 2, 7, 3, 4, 5, 6, 9, 8, 10, 1};int function(int MaxElem,int e=0,int counts=1)

{if (e==N-1)

{//递归的出口

if (sub[e] > MaxElem) counts++;returncounts;

}else{if (sub[e]>MaxElem)

{

MaxElem=sub[e];

counts++;

}return function(MaxElem,e+1,counts);

}

}intmain()

{int max = 0,t;for (int i = 0; i < N; i++)

{if ((t = function(sub[i]))>max) max =t;

}

cout<< max <

}

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页